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Then this is a kind of knowledge which legislation may fitly
prescribe; and we must endeavour to persuade those who are to
be the principal men of our State to go and learn arithmetic,
not as amateurs, but they must carry on the study until they
see the nature of numbers with the mind only; nor again, like
merchants or retail-traders, with a view to buying or selling,
but for the sake of their military use, and of the soul herself;
and because this will be the easiest way for her to pass from
becoming to truth and being.

Plato, Republic, Book VII. Engl. transl. by B. Jowett

J’ai fait en analyse plusieurs choses nouvelles.
Evariste Galois, letter to A. Chevalier (29 mai 1832)

REPUBLIQUE
FRANCAISE
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Preface

This is a small book on algebra where the stress is laid on the structure of
fields, hence its title.

You will hear about equations, both polynomial and differential, and about
the algebraic structure of their solutions. For example, it has been known for
centuries how to explicitely solve polynomial equations of degree 2 (Babylo-
nians, many centuries ago), 3 (Scipione del Ferro, Tartaglia, Cardan, around
1500 A.D.), and even 4 (Cardan, Ferrari, Xvi*® century), using only algebraic
operations and radicals (nth roots). However, the case of degree 5 remained
unsolved until Abel showed in 1826 that a general equation of degree 5 cannot
be solved that way.

Soon after that, Galois defined the group of a polynomial equation as
the group of permutations of its roots (say, complex roots) that preserve all
algebraic identities with rational coefficients satisfied by these roots. Examples
of such identities are given by the elementary symmetric polynomials, for it is
well known that the coefficients of a polynomial are (up to sign) elementary
symmetric polynomials in the roots. In general, all relations are obtained by
combining these, but sometimes there are new ones and the group of the
equation is smaller than the whole permutation group.

Galois understood how this symmetry group can be used to characterize
the solvability of the equation. He defined the notion of solvable group and
showed that if the group of the equation is solvable, then one can express its
roots with radicals, and conversely.

Telling this story will lead us along interesting paths. You will, for example,
learn why certain problems of construction by ruler and compass which were
posed by the ancient Greeks and remained unsolved for centuries have no
solution. On the other hand, you will know why (and maybe discover how)
one can construct certain regular polygons.
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There is an analogous theory for linear differential equations, and we will
introduce a similar group of matrices. You will also learn why the explicit
computation of certain indefinite integrals, such as [ exp(x?), is hopeless.

On the menu are also some theorems from analysis: the transcendance
of the number 7, the fact that the complex numbers form an algebraically
closed field, and also Puiseux’s theorem that shows how one can parametrize
the roots of polynomial equations, the coefficients of which are allowed to
vary.

There are some exercices at the end of each chapter. Please take some time
to look at them. There is no better way to feel at ease with the topics in this
book. Don’t worry, some of them are even easy!

I downloaded the portraits of mathematicians from the MacTutor History
of Mathematics site, hitp://www-groups.dcs.st-andrews.ac.uk/ “history/. 1
encourage those of you who are interested in History of Mathematics to browse
this archive. Reading the books in the bibliography, like the small [4], is also
highly recommended. I found the the scans of mathematical stamps at the
address http: // jeff560.tripod.com/ — those interested in that subject will be
delighted to browse the book [13].

I taught most of this book at Ecole polytechnique (Palaiseau, France).
I would like to take the opportunity here to acknowledge all the advice and
comments I received from my colleagues, namely, Jean-Michel Bony, Jean
Lannes, David Renard and Claude Viterbo. I would also like to thank Sarah
Carr for her help in polishing the English translation.
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Field extensions

We begin with the geometric problem of constructions with ruler and compass.
We then introduce the notions of fields, of field extensions, and of algebraic
extensions. This will quickly give us the key to the impossibility of some clas-
sical problems. In Chapter 5 we will be able to see how Galois theory gives a
definitive criterion allowing us to decide if a geometric construction is, or is
not, feasible with ruler and compass.

1.1 Constructions with ruler and compass

For the Ancient Greeks, the concepts of numbers and of lengths were inti-
mately linked. The problem of geometric constructions of remarkable num-
bers was then naturally posed. Generally, they were allowed to use only ruler
and compass, but they sometimes devised ingenious mechanical tools to draw
more general curves than lines and circles (cf. [4] and the notes of [9]).

Let us give this problem a formal mathematical definition.

Definition 1.1.1. Let X be a set of points in the plane R?. One says that
a point P is constructible with ruler and compass from X if there is an
integer n and a sequence of points (Py,...,P,) with P, = P and such that
foranyi € {1,...,n}, denoting X; = X U{Py,...,Pi_1}, one of the following
holds:

— there are four points A, B, A’ and B’ € X; such that P; is the intersec-
tion point of the two nonparallel lines (AB) and (A’B’);

— there are four points A, B, C, and D € X; such that P; is one of the
(at most) two intersection points of the line (AB) and the circle with center
C and radius CD;
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— there are four points O, M, O' and M' € X; such that P; is one of
the (at most) two intersection points of the distinct circles with, respectively,
center O and radius OM, and center O’ radius O'M’.

Definition 1.1.2. Let us consider a subset X of R. We say a real number
x is constructible from X if it is the abscissa of a point in the plane which
is constructible with ruler and compass from the points (£,0) for £ € X. A
complex number is defined to be constructible from X if its real and imaginary

parts are.

Theorem 1.1.3. Let X be a subset in R containing 0 and 1. The set €s of all
real numbers which are constructible from X satisfies the following properties:

a) if x and y belong to €x, so dox +y, x —y, zy, and x/y if y # 0;
b) if x > 0 belongs to €x, then \/x € €x.

Proof. The proof consists of elementary geometrical arguments and can be
summed up in a series of figures. Addition and substration are obvious. Sta-
bility by multiplication and taking a square root are consequences of Fig-
ures 1.1(a) and 1.1(b). Stability by division can also be seen from Figure 1.1(a)

for if x and zy are known, the figure shows how to deduce y. a
Y
A
1
h=z

0 z Y B T H 1 C
(a) Constructing the product (b) Constructing the square

or the ratio of two numbers root of a real number

(Thales’s theorem) (Pythagoras’s theorem)

Fig. 1.1. Geometric constructions

Exercise 1.1.4. For these figures to be drawn, it is necessary to be able to
construct points outside of the z-axis. You should verify this for yourself. Also
construct the line parallel or orthogonal to a given line and going through a
fixed point.
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In Definition 1.1.1 of a constructible point, the circles are defined by a
given center and a given point on the circumference, there are no graduations
on the ruler, and the compass closes itself as soon as it does not lie on the
plane. Explain, however, how to construct a circle with center a given point
and radius the distance between two other points.

Remark 1.1.5. Any construction with ruler and compass can be done with a
compass only (theorem of Mohr and Mascheroni). This is a pure geometry
result; see, e.g. , [5] for a solution.

1.2 Fields

Definition 1.2.1. A (commutative) field is a set K with two internal laws +
(addition) and x (multiplication) and two distinct elements 0 and 1 satisfying
the following properties:

a) (K,+,0) is a commutative group*;

b) (K \ {0}, x,1) is a commutative group;

c) the law x is distributive with respect to the law +: for any a, b and ¢
inK,ax(b+c)=axb+axec.

Very often, the product a x b is denoted ab. One also denotes K* = K\ {0}.

Ezamples 1.2.2. a) The rational, real and complex numbers form fields,
denoted Q, R and C.

b) The set of numbers (real or complex) which are constructible from {0, 1}
is a field containing the field of rational numbers.

c¢) If p is a prime number, the set Z/pZ of integers modulo p is a field
with p elements.

d) For any field K, the set K(X) of rational functions with coefficients
in K, endowed with the usual addition and multiplication, is a field.

e) If £2 is an open domain in C, the set of meromorphic functions on (2 is
a field.

Algebraic objects which are defined by the
axioms of fields, but without assuming the
commutativity of the multiplication, are called
division algebras. Of course, the law + still has
to be commutative.

EIRE 29

e

ki =
-.' LT

: %\‘

Ezample 1.2.3. The vector space H = R*? . S
whose canonical basis is denoted {1,i,7,k} S s

! The beginning of Chapter 4 offers a quick reminder of the needed group theory.
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admits a unique structure of a division algebra for which the law + is
the usual addition of vectors, 1 is the identity for the multiplication, real
multiples of 1 commute with any other element, and such the the relations

P=2=k*=-1, ij=k

are satisfied. Other relations follow easily. For example, multiplying the rela-
tion ij = k by i on the left, one finds (—1)j = ik, hence ik = —j.
This is the field of Hamilton’s quaternions, first discovered by Hamilton.

A subfield of a field F' is a subset of F' containing 0, 1, stable under 4+ and
X, so that these laws endow it with the structure of a field.

Definition 1.2.4. Let K be a field and S be a subset of K. The field generated
by S in K is the smallest subfield of K containing S.

This is the set of elements of K of the form

Plsi.....5.)
Q(s1,.-.,5n)

where P,Q € Z[X,,...,X,] are polynomials with integer coefficients and
S1,...,8, are elements in S such that Q(s1,...,$,) # 0. If F is a subfield
of K and if x1,...,x, belong to K, the subfield of K generated by F and the
x; is also denoted F'(z1,...,Ty).

Exercise 1.2.5. The set of complex numbers of the form x4y with x, y € Q
is the subfield of C generated by 1.

A weaker structure than that of a field, but nevertheless very important,
is given by a ring.

Definition 1.2.6. A (commutative) ring is a set A endowed with two laws +
(addition) and x (multiplication) and two elements 0 and 1 such that

- (A, +,0) is a commutative group;

— the law X is commutative and associative;

—foranya€ A,ax1=1xa=a;

— the law X 1is distributive with respect to the law +: for any a, b, c € A,
ax(b+c)=axb+axec.

A subring of a ring A is a subset of A containing 0 and 1, stable under
addition and multiplication, endowing it with a ring structure.

An element a of a ring A is said to be invertible, or a unit, if there exists
an element b € A with ab = 1. If such an element exists, it is necessarily
unique and is called the (multiplicative) inverse of a.



1.2 Fields 5

Examples 1.2.7. a) Fields are rings. More precisely, a field is a ring in
which every nonzero element is invertible.

b) The set Z of integers and the set Z/nZ of integers modulo some inte-
ger n are rings. The set Z is a subring of the field of rational numbers.

¢) If A is a ring in which 0 = 1, then A = {0} (null ring, of limited
interest).

d) If Ais aring, the set A[X] of polynomials with coefficients in A is a ring.
The ring A can be identified with the subring of constant polynomials. Details
on the algebraic structure of polynomial rings will be given in Section 2.4.

e) If I is an interval in R, the set of continuous functions on I is a ring. The
sets of functions which are differentiable, €%, €°, or analytic form subrings.

/) The set of elements in C of the form x + iy with  and y in Z is a
subring of C (the ring of Gaussian integers).

g) The set of elements in H of the form x1 + yi + zj + tk with z, y, z,
t € Z is a noncommutative subring of the field of quaternions.

Definition 1.2.8. If A and B are two rings, a ring homomorphism is a map
f: A — B satisfying the following properties:

a) for any a and b in A, f(a+b) = f(a) + f(b);

b) for any a and b in A, f(ab) = f(a)f(b);

) f(0)=0, f(1)=1.

A field homomorphism is a ring homomorphism from one field to another. An
isomorphism (of rings, or of fields) is a bijective homomorphism. The image
of a ring morphism A — B is a subring of B, and the image of a morphism
of fields K — L is a subfield of L.

Definition 1.2.9. One says a ring A is integral, or is an integral domain, if
A # {0} and if for any a and b € A\ {0}, ab # 0.

Ezxamples 1.2.10. a) Fields and the ring Z of relative integers are integral
domains.

b) A subring of an integral domain is an integral domain.

¢) Let n be an integer > 2. The ring Z/nZ is an integral domain if and
only if n is a prime number.

For any integral domain A, one can define a field K containing (a ring
isomorphic to) A so that any element of K is the quotient of two elements
of A: the field of fractions of A. The same principle is used to construct
the rational numbers from the integers. One defines the set K as the set of
equivalence classes of the set .# = A x (A\ {0}) by the equivalence relation

(a,b) ~ (¢,d) < ad = be.
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(Fzercise; show that this is actually an equivalence relation. You will have to
use the fact that A is an integral domain.) One denotes by a/b the class of
the couple (a,b). Addition and multiplication on K are defined by the usual
calculations with fractions, setting

a,c_oadtbe g 2C_%
b d - bd MY bdT b

(Ezercise; check that these operations are well defined, that is (ad+bc)/bd and
ab/cd do not depend on the representing fractions a/b and ¢/d.) Endowed with
these two laws, K is a commutative field, its zero is 0/1 and its 1 is 1/1. The
map A — K such that a goes toi(a) = a/1 is a ring homomorphism. (Ezercise:
check these assertions.) The ring homomorphism i is injective: by definition
of the equivalence relation, if i(a) = a/1 = 0/1, one deduces 1 x a = 0 x 1,
so a = 0. There is therefore no harm in identifying an element a € A with its
image i(a) € K. Observe that for any (a,b) € Z#,

al

13 i(a)i(b)~t.

a
b
In other words, any element of K is the quotient of two elements of i(A).

Examples 1.2.11. The field of fractions of the ring Z is the field of rational
numbers. The field of fractions of the ring K[X] of polynomials with coeffi-
cients in a field K is the field K(X) of rational functions.

If 2 is a domain in C, the ring of holomorphic functions on (2 is an inte-
gral domain (because {2 is connected, this follows from the fact that zeroes of
holomorphic functions have no accumulation point in {2). Its field of fractions
is the field of meromorphic functions on 2. This result is a quite delicate
theorem from analysis relying on the ability to construct explicitly a holo-
morphic function with a prescribed zero-set (Weierstrass products, see, e.g. ,
[11], Theorem 15.12).

Fraction fields possess an important “universal property”:

Proposition 1.2.12. Let A be an integral domain, K its field of fractions. Let
E be a field. For any injective ring homomorphism f: A — E, there exists a
unique field homomorphism f: K — E such that f(a) = f(a) for a € A.

Notice that if a/b = c¢/d, then ad = be, so f(a)f(d) = f(b)f(c) and
fl@)/f(d) = f(e)/f(d). Therefore, if x = a/b belongs to K, one can set
f(z) = f(a)/f(b). One then shows that f is a field homomorphism. Details
of the construction are as tedious as those of the construction of the field of
fractions. (Fzercise...)

One can represent the Proposition visually as a diagram
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A K
|
XL’”
E

where the dotted arrow f: K — FE is the one whose existence is precisely
asserted by the proposition. A common but pompous terminology for that
kind of statement is “universal property.”

Lemma 1.2.13. Let f: A — B be a ring homomorphism. The set I = f~1(0)
of elements a € A with f(a) =0 satisfies the following properties:

-0€el;

—ifaandbel,a+bel;

—ifa€Aandbel, abel.

Moreover, f is injective if and only if I = {0}.
Proof. Left as an exercise! a

Definition 1.2.14. A subset I of a ring A satisfying the three properties of
the preceding lemma is called an ideal. If f: A — B is a ring homomorphism,
the ideal f~1(0) is called the kernel of f and denoted Ker f.

Proposition/Definition 1.2.15. Let A be a ring. Then there exists a unique
ring homomorphism f:Z — A.

Assume that f is not injective. If A is an integral domain, the smallest
positive element in Ker f is a prime number all of whose multiples form Ker f.
When A is a field, this prime number is called the characteristic of A.

If f is injective and if A is a field, one says that A is of characteristic
zero. Then f extends to a field homomorphism g: Q — A.

Proof. Let us first define f. One sets f(0) = 0 and f(1) = 1. By induction,
let f(n) = f(n—1)+1if n > 2. Finally, if n > 1, define f(—n) = —f(n).
As these relations must be verified for any ring homomorphism f, this shows
that such a homomorphism Z — A is necessarily unique.

Let us show that f is a ring homomorphism, i.e. , let us check the relations
f(m—+n) = f(m)+ f(n) and f(mn) = f(m)f(n). They are in fact true by
the same induction argument as the one used to prove that the integers form
a ring.

We show that for m and n > 0, one has f(m + n) = f(m) + f(n). This is true
if n = 0. Moreover, if it is true for an integer n then

flm+(n+1)) = f((m+n)+1) = f(m+n)+1 = f(m)+f(n)+1 = f(m)+f(n+1),

so it is again true for n + 1. By induction, the result is true for any n > 0. If m > 0
and n < 0, but m +n > 0, one has
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fm+mn) = f(m) = f(n) = f(m +n) = f(m) + f(—n)
= f((m+n)+(=n)) = f(m) = f(m) — f(m) = 0.

Other cases are shown similarly.
Let us now show that f(mn) = f(m)f(n) for any m and n. This is obviously
true for n = 0 and if it is true for an integer n,

f(m(n+1)) = f(mn +m) = f(mn) + f(m) = f(m)f(n) + f(m)
= fm)(f(n) +1) = f(m)f(n +1),

so it is true for n 4+ 1. By induction, it is true for any n > 0. Finally, if n < 0,

f(mn) = f(=m(=n)) = =f(m(-n)) = —f(m)f(=n) = f(m)f(n)

as was to be shown.

Assume that A is an integral domain and f is not injective. Consider the
smallest positive integer n such that f(n) = 0. Since f(1) = 1 # 0, one has
n > 2. If n is not a prime number, one may write n = ab for two positive
integers @ and b such that @ < n and b < n. It follows that 0 = f(n) =
f(ab) = f(a)f(b). As the ring A is an integral domain, one deduces that
f(a) =0or f(b) =0, which contradicts the minimality assumption on n. Any
multiple of n goes to 0 by f. Conversely if m is an integer with f(m) = 0,
FEuclidean division of m by n gives us m = gn+r with 0 < r < n. Necessarily,
f(r) = f(m —qn) = f(m) — qf(n) = 0. By minimality » = 0 and m is a
multiple of n.

If f is injective and if A is a field, the universal property (Prop. 1.2.12)
implies that f extends to a homomorphism from Q to A. O

Remark 1.2.16. Let K be a field of characteristic p and let f: Z — K be the
canonical homomorphism as above. If m and n are two integers belonging to
the same congruence class modulo p, m—n is a multiple of p and f(m—n) = 0,
so f(m) = f(n). The homomorphism Z — K induces a natural map Z/pZ —
K which is a field homomorphism.

This shows that any field admits one and only one morphism from one of
the fields Z/pZ (for p prime) or Q, the image of which is called the prime
field.

Proposition 1.2.17. Let p be a prime number and let A be a ring such that
pla = 04 (for example a field of characteristic p). Then any a and b in A
satisfy

(a+b)P =aP +bP.

It follows that the map ¢: A — A defined by ¢(a) = a? is a ring homo-
morphism.
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Proof. Newton’s binomial formula is valid in any (commutative) ring and is
written
p—1 D
p _— 4P V4 npp—n
(@+b)P=al + 07+ (n>a W
n=1
But for any integer n satisfying 1 < n < p— 1, the formula (ﬁ) =p!/nl(p—n)!
shows that n!(p — n)'(ﬁ) = p! is a multiple of p. Since p is a prime number,
and since 1 < n < p—1, n! and (p —n)! are not multiples of p. It follows that
(P) is divisible by p. Therefore, (?) 14 =0, so (a + b)P = a? + bP. O

Definition 1.2.18. If K is a field of characteristic p, the homomorphism
p: K — K given by x — P is called the Frobenius homomorphism.

1.3 Field extensions

Definition 1.3.1. Any field homomorphism j: E — F is called a field exten-
sion.

Observe that such a j is always injective, since for any x # 0,

J(@)j(1/z) = j(1) = 1 #0,

which implies j(z) # 0. Most of the time, j is perfectly determined by the
context and therefore need not be explicitly stated. One then simply says
that F' is an extension of E. This is in particular true when £ C F and j is
the inclusion, in which case we will write “let E C F be a field extension.” If
we agree to replace F by its (isomorphic) image under j in F', we can generally
think of j as the inclusion map.

If j: F — Fis a field extension, F' gets naturally enriched with the struc-
ture of an F-vector space: the addition law is that from F' and the external
multiplication E x F' — F' is defined by e- f = j(e)f.

Definition 1.3.2. The degree of a field extension j: E — F' is the dimension
of F' as an E-vector space. It is denoted [F' : E].
The extension j: E — F is said to be finite if [F' : E] # +o0.

Remark 1.3.3. There is definitely an abuse of notation in writing [F' : E]: the
homomorphism j does not intervene but the degree depends very much on it!
For example, if E = C(X), F = C(Y), the extension j;: E — F defined by
P(X) +— P(Y) has degree 1 (it is an isomorphism) but the homomorphism
jo: B — F defined by P(X) — P(Y?) has degree 2. When F is a subfield
of F', which is the most frequent case, there is no risk of confusion.
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Ezamples 1.3.4. a) The field inclusion R C C is a finite extension: C is an
R-vector space of dimension 2, the family {1,i} being a basis, so [C : R] = 2.

b) For any field K, the extension K C K(X) is not finite. In fact, K(X)
contains the infinite free family {X™, n > 0}.

Remark 1.8.5. The field inclusion Q C R is not finite either. Indeed, the
product of two countable sets is countable. Since Q is countable, it follows
by induction that any finite-dimensional Q-vector space is countable. But the
field of real numbers is not countable, so that [R : Q] = +o0. (This argument
also shows that the dimension of R as a Q-vector space is uncountable.)

It is also possible to exhibit infinite families of real numbers which are
linearly independent over the rationals. For instance, if « is any transcendental
number, then {1,a,a?, ...} are linearly independent. See also Exercise 1.6 for
a more concrete example.

Theorem 1.3.6. Let j: F — F and k: F — G be two field extensions. Then
(koj): E — G is a finite extension if and only if j: E — F and k: F — G
are finite extensions, and one then has the formula

[F:E|[G:F]=[G:E].

Proof. Choose a basis xy,...,z,, of F' as an E-vector space, and a basis

Y1,.--,Yn of G as an F-vector space. Any element z € G can be writ-
n

ten z = > a;y; with a1,...,a, € F. Moreover one may decompose a; as
i=1

m
a; = ». a;;;, so that
j=1

n m
Yy = E E Q5 j ;Y5
i=1 j=1

This shows that the family (xiyj)lgigm generates G as an F-vector space.

This family is even a basis: let ;f j i:; elements in E such that } a; jz;y; =
0. As the family (y;) is a basis of G as an F-vector space, Zz’;ll elements
in: a; ;z; € F are equal to zero. But now, since the family (z;) is an E-basis
Z):le, the a; ; have to be zero too.

Consequently,the dimension of G as an E-vector space is equal to mn =
[F:E]|[G:F]. a

Definition 1.3.7. Let j: E — F be a field extension

An element © € F is said to be algebraic over E if there exists a nonzero
polynomial P € E[X] such that P(x) = 0. Otherwise, = is called transcen-
dental.
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The extension E — F is called algebraic if any element of F is algebraic
over E.

Following historical use, a complex number is said to be algebraic or tran-
scendental if it is such over the field of rational numbers.

Ezamples 1.5.8. a) Consider the field inclusion R C C. An element z =
x+iy in C, with z and y in R, satisfies the equation (z —x)% 4+ y? = 0, which
shows that z is algebraic over R.

b) The real number /2 is algebraic over Q, as is the complex number

V2 + i3+ /5. (Ezercise...)

¢) The real number > 10~™ is transcendental (Liouville, 1844); see Ex-
n=0
ercise 1.2.

d) The set of polynomials with rational coefficients is countable, so that
the set of algebraic complex numbers is countable too. Since the set of com-
plex numbers is uncountable, there exist uncountably many transcendental
numbers (Cantor, 1874).

e) The real numbers e ~ 2.718..., 7 ~ 3.14159... are transcendental
(Hermite, 1873, and Lindemann, 1882).

f) It is not known whether or not 7 is algebraic over the subfield of R
generated by e (whose elements are the P(e) for P € Q(X)).

Let j: E — F be a field extension and let  be any element in F'. The
map ¢, : E[X] — F associating to any polynomial P = ag + - -+ a, X™ the
element

G(P)(@)) = j(ao) + j(ar)a + - + j(an)a"

is simultaneously a homomorphism of F-vector spaces and a ring homomor-
phism. Its image is therefore not only a vector subspace of F' but also a subring
of F', denoted E[z]. It is the subring of F' generated by x over E. (If there is
no risk of confusion, the element j(P)(z) is also written P(z).) We will soon
see (Proposition 1.3.9) that if z is algebraic over E, the subring E[z] in F
is actually a field, and so is identified with the subfield F(z) generated by x
over E.

Generally, if z1, ..., z, are elements in F', one denotes by E|x1,...,x,] the
subring of F' generated by the x; over E. It is the set of all P(zq,...,z,) €
F for P belonging to F[X1,...,X,]. The subfield of F generated by the x;
over E, denoted E(x1,...,x,), is its field of fractions.

The next proposition gives an extremly useful characterization of algebraic
elements in terms of the ring E[z].

Proposition 1.3.9. Let j: E — F be a field extension and let x be an element
of F
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a) If x is transcendental over E, . is injective and E[z] is an infinite-
dimensional E-vector space.

b) If x is algebraic over E, there exists a unique monic polynomial of min-
imal degree P € E[X] such that P(x) = 0. Furthermore, P is irreducible and
dimg E[z] = deg P. Moreover, any polynomial Q € E[X] such that Q(z) =0
is a multiple of P.

Definition 1.3.10. This polynomial P is called the minimal polynomial of x
over E. Its roots (including x) in F are the conjugates of x. Its degree is
called the degree of x over E.

Recall that a nonconstant polynomial P € F[X] is said to be irreducible if
P has no factorization P = QR as the product of two nonconstant polynomials
with coefficients in E. A polynomial is said to be monic if its leading coefficient
is equal to 1. Recall finally that, if £ — F'is a field extension, a root in F' of a
polynomial P € F[X] is an element « € F such that P(z) = 0. By Euclidean
division, one can then write P(X) = (X — z)Q(X), for some polynomial
Q@ € F[X]. By induction, the polynomial P has no more roots in F' than its
degree.

Proof. a) Assume that x is transcendental. Then ¢, is injective by definition,
so it has to be an isomorphism onto its image, which is F[z]. In particular,
dimg E[z] = +o0.

b) Let P € E[X] be a monic polynomial with minimal degree such that
P(z) = 0. Let A be any polynomial in E[X] with A(z) =0. Let A= PQ+ R
be the FEuclidean division of A by P, so that deg R < deg P. One then has
R(z) = A(z) — P(z)Q(x) = 0. If R is a nonzero polynomial, with leading
coefficient 7, the polynomial R/r is monic and its degree is less than that
of P, which is a contradiction. It follows that R = 0 and A is a multiple of P.
(Borrowing from the terminology of Section 2.4, P is the monic generator of
the ideal of polynomials of E[X] vanishing at x.) Since two monic polynomials
dividing each other are necessarily equal, this also implies the uniqueness of
such a polynomial P.

Letting d = deg P, the above argument shows that ¢, induces an injective
homomorphism ¢, 4 from the E-vector space F[X]<4 of polynomials of degree
less than d to E[z]. By Euclidean division again, ¢, 4 is surjective: let A €
E[X] and write A = PQ + R with deg R < d. Then

pa(A) = A(x) = P(2)Q(x) + R(x) = R(z)

belongs to Im ¢, 4. Therefore dimg Efz] = d.
It remains to be shown that P is irreducible. But if P = QR for two
nonconstant polynomials Q and R in F[X], Q(z)R(z) = P(z) = 0, so
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Q(x) = 0 or R(z) = 0. Since  and R are not constant polynomials, and
since deg ) + deg R = deg P, deg Q < deg P and deg R < deg P, which again
contradicts the minimality assumption for the degree of P. O

Here is the first application.
Corollary 1.3.11. Every finite extension of fields is algebraic.

Proof. Let j: E — F be a finite extension of fields. For any z € F, E[z] is an
E-vector subspace of F', so has dimension < dimg F', and is therefore finite.
The preceding proposition implies that x is algebraic over F. ]

The following application may be even more surprising.

Theorem 1.3.12. Let j: E — F be a field extension. Let x and y be two
elements of F', which are algebraic over E. Then x +y and xy are algebraic
over E. If x # 0, 1/x is algebraic over E and belongs to E|x].

In particular, any element of E[x] is algebraic over E.

Corollary 1.3.13. The set of elements of F which are algebraic over E is a
subfield of F'.

Proof. Let us introduce the subring E[z,y| of F' generated by = and y over E,
which is the set of all P(z,y) for P € E[X,Y]. It is a finite-dimensional E-

m—1

vector space and in fact, if 1,2, ...,z and 1,y,...,y" ! generate E[z] and
E[y] respectively, then the set of 2%y’ with 0 < i < m and 0 < j < n spans
E[z,y].

This being said, the subrings E[x + y] and E[xy| are both contained in
E[z,y]. It follows that they are finite dimensional as F-vector spaces and by
the preceding proposition, = + y and zy are algebraic over F.

Assuming that x # 0, let us show that 1/x is algebraic over E. As z is
algebraic, it satisfies a relation ag + a1z + --- + aqz® = 0, where the a; are

elements of E, not all zero. Let us divide this relation by 2. One gets
ao(1/z) 4+ a1 (1/2)¥ 1 +-- 4+ aqg =0,

which proves that 1/x is algebraic over E.

I now claim that 1/x belongs to E[x]. Let r be the smallest integer such
that a, # 0. One thus has ag = --- = a,—; = 0 and a,2" + --- + agz® = 0, so
dividing by =" # 0,

ar + Gry1T+ -+ agz® " =0.
Let us divide this relation once more by a.,x. It follows that

1__M_@x_ (2 A

T ar Q- Q.

and 1/x € E[z], as was to be shown. 0
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Corollary 1.3.14. An element x € F' is algebraic over E if and only if the
ring E[z] is a subfield of F.

Proof. If the inverse of z, assumed to be nonzero, belongs to E[z], there exists
a polynomial P € E[X] such that 1/z = P(z). This implies that x is a root
of the nonzero polynomial 1 — X P(X), so it is algebraic. Conversely, assume
that x is algebraic. For any element a € Elz|, a # 0, it follows from the
preceding theorem that a is algebraic and its inverse in F belongs to E[a]. As
Ela] C E[z], E[z] is a field. (Another proof is given in Exercise 1.1.) O

Remark 1.3.15. Let j: E — F be a finite extension of fields and let x € F. One
saw in the preceding corollaries that x is algebraic over F and E[z] is a subfield
of F. We therefore are in the presence of a composed extension E — E[z] — F
and Theorem 1.3.6 implies that [F : E] = [F : E[z]][F[z] : E]. The degree
of the extension E — E[z] is precisely equal to the degree of x. This shows
that the degree (over E) of any element of F' divides the degree [F : E] of the
extension £ — F.

Another corollary along this line is a “transitivity” property for algebraic-
ity.
Theorem 1.3.16. Let j: E — F and k: F — G be two field extensions. If
an element x € G is algebraic over F and if F is algebraic over E, then x is
algebraic over E.

In particular, if E — F and F — G are algebraic extensions, then the
composed extension E — G is also algebraic.

Proof. Let P € F[X] be the minimal polynomial of 2 over F, write P =
X"+ a,_1 X"t 4+ .- 4+ ap. The a; are in F, so are algebraic over . By
induction, the subring Fy = Elag,...,a,—1] of F is a field and a E C Fy is a
finite extension. By construction, z is algebraic over Fjy so that the extension
Fy — Fplx] is finite. Theorem 1.3.6 implies that the extension E — Fy[z] is
finite, which in turns establishes that x is algebraic over E. 0

Remark 1.5.17.1f A — B is a ring homomorphism, one says that B is an
A-algebra. Besides field extensions (if £ — F is a field extension, F' is au-
tomatically an FE-algebra), particularly important examples of K-algebras
are the polynomial rings K[Xi,...,X,] in n variables Xi,...,X,, over a
field K. If A is a ring containing a field K and elements z1,...,x, such
that A = Kz, ...,x,], A is called a finitely generated K-algebra.
Proposition 1.3.9 shows in particular that if A = K|z] is a field, then A
is algebraic over K. An important theorem proved by Hilbert, often referred
to under its German name Nullstellensatz, meaning “theorem of the location
of zeroes,” and which we shall prove in Section 6.8 (Theorem 6.8.1), extends
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this fact to all finitely generated K-algebras, not only those generated by a
single element.

1.4 Some classical impossibilities

I want to show how the results derived in this chapter already allow us to
prove that certain geometric constructions are impossible.

As the set of constructible numbers is a field, being constructible
from {0,1} is equivalent to being constructible from the field Q of rational
numbers.

Theorem 1.4.1 (Wantzel, 1837). Let E be a subfield of R. A real number
x is constructible from E if and only if there exists an integer n and a series
of subfields in R,

E=FEy,CFE,C---CE,

such that for any i € {1,...,n}, [E; : EB;_1] = 2 and such that x € E,,.

Before proving this, we have to describe the algebraic structure of exten-
sions of degree 2. They are obtained by “adjunction of a square root,” which
is why they are also called quadratic extensions.

Proposition 1.4.2. Let E be a subfield of R (more generally any field with
characteristic # 2) and let j: E — F be an extension of degree 2. Then there
ezists an element a € F'\ E such that a®> € E and F = E|a).

Proof. Let z be an element of F' which does not belong to E. The family (1, z)
is then free over E so is a basis of F' as a E-vector space. This implies that
the family (1,z,z?) satisfies a linear relation and there exist three elements
a, b, ¢ in E, not all zero, such that az? + bz + ¢ = 0. As the family (1,z) is
free, a # 0, which gives us the familiar formula.

n b\> b2 —dac

T+ —] =——.

2a 4a?

Let 6 = 2ax + b. Then 62 = b? — 4ac € E is the discriminant of the equation
ax? + bx + c. Since x = §/2a, (1,0) is a basis of F over E. O

Proof of Wantzel’s theorem. The proof relies on the form of the equations of
lines or circles that intervene in a geometric construction with ruler and com-
pass, and also on the explicit resolution of the equations giving the coordinates
of intersection points.

First of all, a line passing through two points A = (a,b) and A’ = (a/, V')
the coordinates of which belong to K has an equation with coefficients in K,
namely,
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111
det |z aa | =(ab —a'b)—x(d —b)+yld —a)=0.
yb

Similarly, the circle with radius M M’ and center O, where M = (a,b), M' =
(¢/,V) and O = (a”,b") are points in the plane with coordinates in K, has an
equation of the form

22 +y? + Az + By +C =0,
with A, B, C in K, as is immediately observed by expanding the equation
(l‘ _ a//)2 + (y _ b//)2 — (CL _ a/)2 + (b _ b/)2

of this circle.

The usual explicit formulae for the coordinates of the intersection point
of two intersecting lines are rational expressions in the coefficients of the
equations of the lines. Therefore, the intersection point of two nonparallel
lines (AA’) and (BB’) has coordinates in K, if A, A’, B, B’ are points with
coordinates in K.

If P is obtained by intersecting a line and a circle, one writes the polyno-
mial equations of degree < 2,

2> 4y’ + Az +By+C=0 and Dz+ Ey+F =0,

with A, B, C, D, E, F € K. Assuming, for example, F # 0 and eliminating y,
one gets an equation of degree 2 with coefficients in K for z. Let us denote by
A its discriminant (this is an element of K). Then x belongs to the extension
K(v/A) which has degree < 2 over K, and so does y = —(Dx + F)/E.

If P is the intersection point of two circles, one subtracts the equations
of the two circles, which brings us back to the case of a circle and a line.
(Geometrically speaking, this line is the radical azis of the two circles. If the
circles meet, it is the line passing through their intersection points.)

By induction on the number of steps, every real number constructible from
the subfield E is of the form claimed by the statement of the theorem.

Conversely, if x € E,, the last field of a chain of quadratic extensions,
let us show that x is constructible. By induction, it suffices to show that if
E C F is such a quadratic extension, every element in F is constructible
from E. Proposition 1.4.2 states that there exists an element ¢ in F' such that
F = E[§] and 6% € E. By Theorem 1.1.3, § = +/62 is constructible from F,
as is any element in R which is of the form x+yd. This shows that any element
in F' is constructible from F. O

Exercise 1.4.3. Extend Wantzel’s theorem to complex numbers.
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Corollary 1.4.4. Let E be a subfield in R and let x be a real number which
is constructible from E with ruler and compass. Then x is algebraic over E
and its degree is a power of 2.

Proof. Let E=FEy C E; C --- C E, C R be a chain of quadratic extensions,
with « € E,. By induction, the multiplicativity of degrees implies that

[En : E] = [En : El][El : EQ] ZQ[En : Eﬂ =...=2"

Considering the composed extension E C E[z] C E,, one sees that the degree
of Elx] over E must divide 2", so is necessarily a power of 2. O

We can now prove that certain constructions which were sought in vain
for a long time are simply impossible.

Theorem 1.4.5 (Doubling the cube). The real number /2 is not con-
structible with ruler and compass from Q.

It is therefore impossible to construct the length of a cube whose volume
would be twice that of the unit cube. The legend says that this geometric
problem comes from a wish of the Greek god Apollo, who had asked someone
to make one of his altars twice as big.

Proof. Set o = /2. It suffices to show that the degree of a is not a power
of 2. As «a is a root of the polynomial X3 — 2, it has degree < 3 and one needs
to prove only that X3 — 2 is irreducible over Q, for the degree of o will then
be equal to 3.

By Lemma 1.4.9 below, a polynomial of degree 3 is either irreducible or has
a root in Q. But the roots of X3 — 2 are «, avexp(2im/3) and «aexp(—2ir/3).
Only « is real, so only it might be a rational number. If it were, let us write
a = a/b as a fraction in lowest terms. One has a® = 2b® and a is even. Set
a = 2a’. One then has b®> = 4(a’)3, which shows that b is even too. This
contradicts the hypothesis that a and b are coprime. Therefore, a is not a
rational number and the polynomial X3 — 2 is irreducible over Q. ]

The problem of trisecting an angle is more subtle. From the point with
coordinates (cos(a),sin(«)) on the unit circle, one is asked to construct the
point with coordinates (cos(a/3),sin(a/3)).

Notice that sin(a) is constructible from the field Q(cos(a)), because
sin?(a) = 1 — cos?(a). Hence, it is the same for cos(a/3) to be constructible
from Q(cos(a),sin(a)) as to be constructible from Q(cos()). Moreover, as-
suming that cos(a/3) is constructible from Q(cos(x)), then sin(a/3) will be
constructible, too. Consequently, one may trisect the angle a if and only if
cos(a/3) is constructible from Q(cos(a)).

As cos(3z) = 4cos?(x) — 3cos(x), 2cos(a/3) is a oot of the polynomial
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X3 —3X —2cos(a),

the two other roots being 2 cos((a + 27)/3) and 2 cos((a + 47)/3).

If the polynomial X3 — 3X — 2cos(a) is irreducible over Q(cos(c)), then
cos(a/3) has degree 3 over Q(cos(a)) and the trisection of angle o cannot be
done with ruler and compass. Otherwise, Lemma 1.4.9 implies that has a root
in Q(cos(«)), hence factors as the product of two polynomials in Q(cos(«))[X]
of degrees 1 and 2. This implies that all of his roots are constructible. We have
thus proven the following theorem.

Theorem 1.4.6 (Trisecting an angle). Let a be a real number. The real
number cos(a/3) is constructible with ruler and compass from {0,1, cos(a)} if
and only if the polynomial X3 —3X —2 cos(a) has a root in the field Q(cos(a)).

Ezample 1.4.7. Let us show that the angle 7/9 cannot be constructed with
ruler and compass. As cos(w/3) = 1/2, it suffices to prove that the polynomial
P = X3 —3X — 1 has no root in Q. Let us consider such a root, written as
a fraction in lowest terms a/b. One has a® — 3ab®> — b> = 0. If p is a prime
number dividing a, it divides v*> = a(a® — 3b?), and so divides b. As a and b
are coprime, a = +1. Similarly, if p is a prime number dividing b, it divides
a® = bv*(3a + b) and it divides a. Therefore, b = +1. It follows that only +1
and —1 can possibly be rational roots of P. As P(1) = =3 and P(—1)=1, P
has no root in Q, and so is irreducible over Q.

This shows that one cannot construct with ruler and compass a regular
polygon with 9 edges. Later in Chapter 5, Theorem 5.2.2, we will determine
which regular polygons are constructible with ruler and compass.

Theorem 1.4.8 (Quadrature of the circle). The real number /T is not
constructible.

In more classical terms, it is impossible to construct with ruler and compass
the length of a square whose area would be that of the unit disc.

Proof. If \/7 were constructible, it would be algebraic over Q, and so would 7.
But F. Lindemann proved in 1882 that w is transcendental; see Theo-
rem 1.6.6. O

The following lemma has been used many times.

Lemma 1.4.9. Let K be a field. A polynomial P € K[X] with degree 2 or 3
is irreducible over K if and only if it has no root in K.

Proof. If P has aroot a € K, one can write P = (X —a)Q for some polynomial
Q € K[X] of degree < 2, hence P is not irreductible.
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Conversely, assume that P is reducible and write P = QR for two non-
constant polynomials @ and R in K[X]. As deg @ + deg R = deg P € {2, 3},
either deg @ or deg R is equal to 1. It necessarily has a root in K, and so
does P. O

1.5 Symmetric functions

Recall that the group of permutations (bijections) of the finite set {1,...,n}
is denoted &,,. It is a finite group with cardinality n! =n(n —1)...2- 1.

Definition 1.5.1. A polynomial P € A[X;,...,X,] in n wvariables
Xq,..., X, and with coefficients in a ring A is said to be symmetric if for
any permutation o € &,,, one has

P(Xo(1)s s Xogy) = P(X1,..., Xo).

The most famous examples are the sum S;(X) = X; +--- + X, and
the product S,(X) = X;...X,. More generally, one defines the elementary
symmetric polynomials by

S,(X) = > XX, 1<p<n
1<i1 <+ <ip<n

It is important to notice that these polynomials are the coefficients of the
polynomial (T'— X1) ... (T — X,,) (this is a polynomial in the variable 7" with
coefficients in the ring A[X1,..., X,]). More precisely, one has

(T—X1)...(T—X,)=T" = ST + ST % 4+ (=1)"8,.

There are many other symmetric polynomials; for example, Newton poly-
nomials
Ny(X) =XV +---+ XP.
These satisfy N; = S,
No(X) =X+ + X2

= X1+ + X)) —2(Xn X+ Xy X3+ 4+ X1 Xp)

= 57 — 25,
and in general, N,(X) can be written as a polynomial with integer coefficients
in S1(X),...,S.(X).

Proposition 1.5.2. For any integer p > 1, there is a polynomial with integer
coefficients P, € Z[Th, ..., T,] such that

Np(Xq,...,Xp) = Pp(S1(X), ..., S,(X)).
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Proof. Introduce the polynomial IT = (T — X1) ... (T — X,,) and let M be its
companion matrix. This is the square n X n matrix

(_1)n—1Sn

10 (-1)"=28,, 4
0 —So
1 Sh

with coefficients in the subring Z[Sy,...,S,] of Z[X3, ..., X,]. The minimal
polynomial and the characteristic polynomial of M are both equal to IT. As the
characteristic polynomial of M is split in the field Q(Xjy, ..., X, ), with roots
X1,...,X,, the matrix M is conjugate (in that field) to an upper triangular
matrix T with diagonal X, ..., X,,. By definition, IV, is the trace of T?, so it
is the trace of MP? as well. As M has its coefficients in the ring Z[S1, ..., Sy],
so do its powers, and so do their traces. This shows that P, exists. ]

What we have just shown for the Newton polynomials is a general and
fundamental fact valid for any symmetric polynomial.

Theorem 1.5.3. For any symmetric polynomial P € A[Xq,...,X,], there
exists a unique polynomial Q € A[Y1,...,Y,] such that

P(leon,Xn) = Q(Sl(X)vaSn(X))

Proof. The existence of @ is shown by induction first on the number of vari-
ables n, and then on the degree of P. If n = 1, one has S; = X; and one
sets Q = P. If deg P = 0, P is constant and one chooses for @) this constant.
Assume that the result is satisfied in (n — 1) variables, and that it holds in
degrees < m for n variables, and let P be any symmetric polynomial of de-
gree m in Xi,...,X,. The polynomial P in (n — 1) variables X;,..., X,
defined by
Py(X1,...,Xpn1) = P(Xq,...,X,-1,0)

is symmetric. By induction, there is a polynomial
Qo € A[Y1, ..., Y, 4]
such that
Po(Xa,..., Xn—1) = Qo(S1(X), ..., Sn-1(X)).

In this last formula, there appear symmetric polynomials in (n — 1) variables,
but it is readily verified that, letting the number of variables equal the expo-
nent,
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S]gnil)(Xla oo 7Xn—1) = Sén)(X17 e 7X”_1’ O)

and more generally,
Sén)(Xh s 7Xn) = SI()nil) (Xh s aXn—l) + anévizl)(xla s 7Xn—1)-

Then
P (X)=P(Xy,...,Xn) — Qo(S1(X),...,S.—1(X))

is a symmetric polynomial which becomes the null polynomial when X,, is
replaced by 0. The coefficient of any monomial X fl ... X! is zero as soon as
in, = 0. Since P; is symmetric, the coefficient of Xfl ... X is also null as
soon as any one of the ¢; is zero. Therefore, any nonzero monomial in P; is
a multiple of S,, = X;...X, and so is P;. Let us write P, = S,, P, for some
P, € A[Xy,...,X,]. The polynomial P is still symmetric but has degree
< m. By induction, one may write Py = Q2(S1,...,Sy,). Finally,

P(X) = Qo(Sl,...,Sn) +P1(X) = Qo(Sl,...,Sn) +SnQ2(Sl,...,Sn)

and it suffices to set Q = Qo + Y, Q2.

Let us now show uniqueness. It suffices to show that for any polynomial
Q € AlYy,...,Y,] satisfying Q(S1,...,S,) = 0, one has @ = 0. This is obvious
for n = 1. Assume that the uniqueness property is established for (n —1) vari-
ables and let us show the result for n variables by induction on the degree
of Q. Setting X, equal to 0, one has in particular

0=Q(S1(X1,..., Xn-1,0),...,5.(X1,...,Xn-1,0))
= Q(5! (n— 1) ] S(n 1) ,0),

which implies by induction that Q(Y1,...,Y,—1,0) = 0. The polynomial @
is therefore a multiple of Y,, and one concludes by induction on the degree
of Q. O

An important symmetric polynomial is the discriminant:

D =] - x;)%
i<j
To prove that it is indeed symmetric, it may be more convenient to write it
as
D= (1) T(X - X))

i#]
and to observe that for any permutation o € &,,, the map (4, j) — (o(4),0(j))
is a bijection from the set of ordered pairs of distinct integers in {1,...,n}
onto itself. This shows that for any o € &,,,
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D(Xo(1y, s Xom) = (=1)"" V2T [(Xo0) — Xo@))

i
= (=)D (X - X)
i
=D(X1,...,Xn),

hence D is symmetric.

1.6 Appendix: Transcendence of e and &

We show in this section that e and 7 are transcendental. As these real
numbers are not defined by algebra but really by analysis, it should not be
surprising that the proof involves analytic tools, united in the following lemma.

Lemma 1.6.1. Let f be a polynomial with real coefficients; let m be its degree.
For any complex number z, the integral

I(f;2) = /01 2e*=% f(zu) du

satisfies
m m

I(f;2)=e*Y_ f9(0) = > f9).

J=0 J=0

Moreover, the following upper bound is valid:

I(f;2) < |z[ € sup |f(zu)].
u€[0;1]

Proof. By integration by parts on the definition of I(f;z), one finds

I(f;2) = [_ez(lfu)f(zu)}; + /01 ez(lfu)zf/(zu) du
= —f(2) + e f(0) + I(f';2),

hence the result by induction on the degree of f. The upper bound for |I(f; z)|
follows from the fact that, for any « € [0, 1], one has

2e*17W f(zu)| < |z el sup | f(zu)],
ue[o,l]

by integration over [0, 1]. O

Lemma 1.6.2. Let [ be a polynomial with integer coefficients. For any in-
teger n > 0, there exists a polynomial f, with integer coefficients such that



1.6 Appendix: Transcendence of e and 7 23

Proof. By linearity, it suffices to prove this for f = X™. In this case, f(™ =
m(m —1)...(m — n+ 1)X™ ™. Therefore, the polynomial f, = (7)X™ ™"
has integer coefficients and f(") = n!f,,. a

Theorem 1.6.3 (Hermite). e is a transcendental number.

Proof. Let us reason ad absurdum. If e were
algebraic, there would exist integers ag, . . . , @y,
not all equal to 0, such that

ag+are+ -+ ae” =0.

Dividing this relation by a power of e, if nec-
essary, we may assume that ag # 0. Let p be a
prime number (fixed for the moment, but later
we will take the limit as p goes to infinity).

Let f(X)=XP"H(X —1)P...(X —n)? and
introduce

Jp =aol(f;0) +arI(f;1) + -+ aI(f;n). Charles Hermite (1822-1901)

It follows that
np+p—1

Jp = _iak Z f(j)<k)7
k=0 §=0

which in particular is an integer.
By Lemma 1.6.1, there exists a real number ¢ such that |J,| < ¢? for all p.
Moreover, if k € {1,...,n}, then k is a root of f with multiplicity p,
so that fW (k) = 0 for j < p. If j > p, fU(k) is also divisible by p!, by
Lemma 1.6.2 above. Observe, however, that £ = 0 is a root of f with multi-
plicity exactly p — 1. Therefore f)(0) = 0 for j < p— 1, and f)(0) is still a
multiple of p! for j > p, but

FEI0) = (0= DU . (=) = (~1)"(p — 1)(nl)”
Consequently, there exists an integer IV, such that
Jp = (=1)""*ag(p — 1)!(n!)? + pIN,,.

In particular, if p > n and p does not divide ag, then J,/(p — 1)! is an integer
which is nonzero modulo p, and therefore J,/(p — 1)! # 0. But any nonzero
integer has absolute value at least equal to 1, implying |J,| > (p — 1)!. Since
ap # 0, large prime numbers p do not divide ag and, for those, one gets the
inequality ¢® > |J,| > (p — 1)!. However, this contradicts Stirling’s formula

pl ~ pPe P/ 2mp

when p goes to infinity. a
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Let us now prove that m is transcendental. If f is any nonzero polynomial
and g: C — C any function, we will denote by

> gla)

J(e)=0

the sum g(a1) + -+ + g(ap), the o; being the roots of f repeated according
to their multiplicities.

Lemma 1.6.4. Let f be a polynomial with integer coefficients and with leading
coefficient c. Then, for alln > 0,

c" Z a" e Z.

fla)=0

Proof. Let m be the degree of f and let A denote the companion matrix

with minimal polynomial f/c. The eigenvalues of A are the roots of f, with

the same multiplicities. It follows that the eigenvalues of cA are the ca, for

f(a) =0, and those of ¢" A™ are the ¢”a™, with f(a) = 0. Hence, ¢ > a”
fle)=0

is precisely equal to the trace of ¢ A™. By hypothesis, cA is a matrix with

integer coefficients. It follows that ¢™A™ has also integer coefficients and its
trace is an integer. O

Proposition 1.6.5. Let f be any polynomial with integer coefficients such

that f(0) # 0 and assume the sum Y. €e* is an integer. Then this sum is
f(a)=0
equal to zero.

Proof. Let S = > e® and let us assume that S is a nonzero integer. Let ¢
f(a)=0
be the leading coefficient of f.

Let p be a prime number, and define g(X) = X?~1 fP(X). This is a poly-
nomial with integer coefficients and with degree m = p(1+deg f) — 1. Finally,

let
=Y I(gia).

f(a)=0
The upper bound for I given by Lemma 1.6.1 implies that there exists a real
number M > 0 such that, for any p,

] < M.

It also follows from Lemma 1.6.1 that

J, =S (Zgw(m) S DRI

n n f(a):O
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If f(a) =0, a is root of g with multiplicity p, so that ¢ (a) = 0 for n < p.
Moreover, if n > p, Lemma 1.6.2 asserts that g, = g(”)/p! is a polynomial
with integer coefficients and degree m —n < m — p. The preceding lemma now
implies that there exists an integer A, such that

cmTP Z Z g™ (a) = plA,.
n f(a)=0

Furthermore, ¢ (0) = 0 for n < p — 1, is divisible by p! for n > p, but
g0 (0) = (p — DI(0)".
This shows that there exists an integer B, such that
> ™) = (p—1)!£(0)” + p!B,.
Finally,
Jp=(p—DIf(0)PS +pl(c""™A, + SB,).
In particular,

cnP

o = IIOPS 4 p(A, 4 ¢ TSB)

is an integer. Moreover, if the prime number p does not divide ¢f(0)S, then
this integer is not divisible by p. It is therefore nonzero, and has absolute
value at least 1. This gives us the lower bound

12 (p— D1 = pet-rs

Since ¢Sf(0) # 0, any large enough prime number satisfies the last in-
equality. The above upper bound for J, then implies that

(p — 1)let—Pdee s < ppP,
which again contradicts Stirling’s formula when p goes to infinity. O

Theorem 1.6.6 (Lindemann). 7 is transcendental.

Proof. If m were algebraic, im would be algebraic too. Let then f be an irre-
ducible polynomial with integer coefficients such that f(im) = 0. Let us denote
its roots by ay, ..., a,. From Euler’s Equation 1 + ™ = 0, one deduces that

I[[ G+e)=@+e)...(1+e™)=0.
f(a)=0

Let us expand this equality. One gets
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Z exp(z gja;) =0.

e€{0,1}n

But now the sums ) e¢;a; = 0 are the roots of the polynomial

Rx) = ][ (X—Z%‘%‘),

e€{0,1}n

whose coefficients obviously can be expressed with symmetric polynomials in
the a;. By Theorem 1.5.3 on symmetric polynomials, the coefficients of F are
polynomials with integer coefficients in the elementary symmetric polynomials
of the oy, so in the coefficients of f. It follows that Fy has rational coefficients.
Consequently, there exists an integer N > 0 such that NFy € Z[X]. One has
Fy(0) = 0 (corresponding to €; = 0 for all j); let ¢ > 1 be the multiplicity of
this root 0 and let us set F = NF,/X?. Then F is a polynomial with integer
coefficients and F'(0) # 0. Moreover, one has

0= Z exp(Zejaj):q—i— Z el

e€{0,1}n F(B)=0

Since g # 0, this contradicts Prop. 1.6.5. O

Exercises

Exercise 1.1. a) Let A be integral domain. If A is finite, show that A is a field.
Examples?

b) Let F be an integral domain and let E C F be a subring of E which is a field.
Assume moreover that F' is a finite-dimensional E-vector space. Show that F' is a
field.

Exercise 1.2 (Liouville’s criterion). Let o be a complex number. Assume that
« is algebraic over Q and let d be its degree.

a) Show that there exists a polynomial P € Z[X] with degree d such that P(a) =0
and P'(a) # 0.

b) Using a), show that there exists a real number ¢ > 0 such that for any (p,q) €
Z x N*, one has

C
> .

q

q

c) Show that the real number

a= i 0™
n=1
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is transcendental over Q. (Liouville, 1844). A real number, the transcendental nature
of which can be established this way, is said to be a Liouville number. The set of all
Liouville numbers is uncountable but has measure 0 in R. One also knows that
and e are not Liouville numbers.

Exercise 1.3. Let C(z) denote the field of rational functions with complex coeffi-
cients. Let {2 be any domain in C and let .#({2) denote the field of meromorphic
functions on (2. Let j: C(z) — .#(£2) be the natural field homomorphisms associ-
ating to a rational function the corresponding meromorphic function on (2.

a) Let f € C(z) be any nonconstant rational function without poles in (2. Show
that exp(f) € .#(£2) does not belong to C(z).

b) It f is any element in C(z) \ C, show that exp(f) is transcendental over C(z).
(By contradiction, if N denotes the degree of exp(f) over C(z), differentiate with

N
respect to z a nontrivial algebraic relation > pn(z)exp(nf(z)) = 0. Conclude that

exp(N f(z)) € C(z).)

c) If f1, ..., fn are distinct nonconstant elements of C(z), show that exp(fi), ...,

n=0

exp(frn) are linearly independent over C(z). (Prove this by induction on n. Consider
n

a relation Y p;(z) exp(fi(z)) = 0. If p, # 0, divide it by pn(z) and differentiate.)
i=1

Exercise 1.4. a) Let P = X" + an1 X" 14+---+agbea polynomial of degree n
with complex coefficients. Show that any root z € C of P satisfies

|z] <14 a0l + -+ |an—1].

b) Let f: C — C be an entire function, that is, a holomorphic function defined on
the whole complex plane. Assume that f is algebraic over the field C(z) of rational
functions. Show that there is an integer n > 0 and a real number ¢ such that, for
any z € C,

P < et +]20").

c) (continued) Let f(z) = 3. ¢;j2’ be the Taylor expansion of f. Prove that the
7=0

function g defined by g(z) = 3. ¢;j4n2’ is entire and bounded. Deduce from Liou-
j=0

ville’s theorem on bounded entire functions that f is a polynomial.

Exercise 1.5. Let P be a monic polynomial in Z[X]. If a € Q is a root of P, show
that a € Z.

Exercise 1.6. a) Let E C F be a quadratic extension. Consider « € F'\ E such
that > € E. Let a € E. If a is a square in F, prove that either a is a square in E,

or az? is a square in E.

b) Let p1,...,pn be distinct prime numbers. One considers the following two prop-
erties:

(an) the field Q(\/p1,. .., /Pn) has degree 2" over Q;
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(br) an element z € Q is a square in Q(,/p1, - - -, +/Pn) if and only if there exists
a subset I C {1,...,n} such that = [] p; is a square in Q.
iel
Show that (an) and (by) together imply (an+1), and that (a,) and (bn—1) imply
(bn). Deduce by induction on n that both hold for any integer n.
c) Show that the square roots \/5, \/g, \/57 \ﬁ, ... of all prime numbers are linearly
independent over the rational numbers.

Exercise 1.7. Let p be any prime number and consider the polynomial P =
X"+ X +p, with n > 2.

a) Assume that p # 2. If z denotes a complex root of P, show that |z| > 1.

b) Still for p # 2, prove that P is irreducible in Z[X].

c) Assume that p = 2. If n is even, show that P is irreducible in Z[X]. If n is odd,
show that X + 1 divides P and that P(X)/(X + 1) is irreducible in Z[X].

d) More generally, any polynomial P = ap + a1 X + -+ + ap, X" € Z[X], such
that |ao| is a prime number greater than |ai|+ - - - + |ax|, is irreducible.

Exercise 1.8. Let P = X" +a,_1X" '+ -+ao be any monic polynomial in Z[X]
such that ao # 0 and

|[an—1] > 1+ |an—2| + -+ + |ao] .

a) Using Rouché’s theorem in the theory of complex variables, show that P has
exactly one complex root of absolute value > 1.

b) Show that P is irreducible in Z[X] (Perron’s theorem).

Exercise 1.9 (Content of a polynomial). If P is any polynomial with integer
coefficients, define the content of P as the greatest common divisor of its coefficients,
denoted ct(P).

a) Let P and @Q be two polynomials in Z[X]. Let p be a prime number which
divides all coefficients of PQ. Show by reduction modulo p that p divides either
ct(P) or ct(Q).

b) Show for any polynomials P and @ in Z[X] that ct(PQ) = ct(P) ct(Q).

c) Let P be a monic polynomial in Z[X] and let Q be a monic polynomial in Q[X]
which divides P in Q[X]. Show that @ has integer coefficients.

Exercise 1.10 (Eisenstein’s criterion for irreducibility). Let p be a prime
number and let A = an X" +- -+ ao be any polynomial with integer coefficients such
that a) p divides ao, ..., an—1; b) p does not divide an; ¢) p* does not divide ao.
Then A is irreducible in Q[X].

The proof is ad absurdum assuming that A is reducible in Q[X].

a) Using part a) of the previous exercise, show that there exist nonconstant poly-
nomials B and C € Z[X] such that A = BC.

b) Let us denote B = baX? + -+ bo. Reducing modulo p, show that p divides bo,
vy ba—1.
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c) Show that p? divides ao. This is a contradiction.
d) Show that the polynomial

XP -1
X -1

is irreducible in Q[X]. (Apply a change of variables X =Y + 1.)

:Xp_1_|_..._|_1

Exercise 1.11. Show that the set of constructible complex numbers is a subfield
of C which is stable under taking square roots.

Exercise 1.12. In a 1833 book devoted to geometry, Traité du compas (Traité
élémentaire de tous les traits servant aux Arts et Métiers et a la construction des
Bdatiments) by Zacharie [14], one can find the following construction.

Construct a regular heptagon, that is a figure with seven equal sides.
From any point draw a circle; draw the diameter AB, divide this
diameter in seven equal parts, at points 1, 2, 3, 4, 5, 6, 7; construct
two circles with centers A and B, each with radius AB, meeting at
the point C; from the intersection point C, draw the line C'5 which
you will extend until it meets the circle at a point D; draw the line
BD, it will be the side of the heptagon; with the compass, mark the
length of line BD on the circle, at points E, F', G, H, I and you will
get the heptagon.

Draw a picture and explain where the construction goes wrong.

Exercise 1.13. Let P denote the polynomial X% — X — 1.

a) Show that it has exactly two real roots. One denotes them z; and x2. Let x3
and x4 be the two other complex roots.

b) Show that P is irreducible over Q. (You may either reduce modulo 2 or observe
that P has exactly one root of absolute value less than one.)

c) Let P(X) = (X% + aX + b)(X? + ¢X + d), where a, b, ¢ and d are to be
determined. Express b, ¢ and d in terms of a. Then construct a polynomial @ of
degree 3 such that, a being fixed, this system has a solution if and only if Q(a?) = 0.

d) Show that @ is irreducible over Q.
e) Prove that z1 and x2 cannot both be constructible with ruler and compass. (In

fact, it will follow from Exercise 5.4 that neither of them can be.)

Exercise 1.14 (Newton’s formulae). a) Prove the following formulae relating
Newton sums and elementary symmetric polynomials in Z[X1,..., X,]:
if m < n, Nm — Np1S14+ -+ (_1)m71NISm71 +(—=1)"™mSm =0
if’l?’l>’fl7 N — Non—151 ++(—1)nNm,nSn =0.

b) Deduce from this that any symmetric polynomial in Q[Xy,...,Xy] can be
written uniquely as a polynomial with rational coefficients in the Newton sums
Ni,...,Ny.

c) Is this still true in a field of characteristic p > 07
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Exercise 1.15. Let (G, +) be a finite abelian group. One says that an element g € G
has order d if d is the smallest integer > 1 such that dg = 0.

a) Let g and h be two elements of G, with orders m and n. If m and n are coprime,
show that g + h has order mn.

b) More generally, if G possesses two elements with orders m and n, show that
there is an element in G with order 1. c. m.(m, n).

c) Show that there exists an integer d > 1 and an element g € G such that a) g
has order d; b) for any h € G, dh = 0.

Exercise 1.16. Let F be a commutative field and let G be a finite subgroup of E*.
Show that G is a cyclic group. (Consider a couple (d, g) as in Exercise 1.15, ¢), and
show that g generates G.)

Exercise 1.17. Let j: K — FE be a field extension, x1,...,x, elements in F. Show
that the following properties are equivalent:

a) the z; are algebraic over K;

b) K[z1,...,2y] is finite dimensional over K;
c) K[z1,...,xn] is a field;

d) K(z1,...,2y) is finite dimensional over K.

(That (c) implies (d) requires Hilbert’s Nullstellensatz, Theorem 6.8.1.)

Exercise 1.18. Define the degree, the weight and the partial degree of a monomial
Xfl ... X! as the quantities i1 +- - - +in, 41+ 22+ - - +nin and max(i1,...,in). The
degree, the weight and the partial degree of a polynomial P, denoted respectively
deg(P), w(P) and 4(P), are by definition the maximum of the degrees, weights and
partial degrees of its nonzero monomials.

a) Compute the degrees, weights and partial degrees of the elementary symmetric
polynomials Si,. .., Sn.
b) Let P € Z[Xy,...,X»] be a symmetric polynomial. By Theorem 1.5.3, there
exists a unique polynomial @ € Z[X1, ..., X,] such that P = Q(S1,...,Sn).
By returning to the inductive proof of Theorem 1.5.3, show that deg(P) = w(Q)
and §(P) = deg(Q).
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In the first chapter, the emphasis was on given numbers, and we were led to
look at the equations of which they are solutions. In this chapter, we switch
roles and look at polynomial equations and their eventual roots. Generalizing
the construction of the field of compler numbers from the real numbers, we
show how to create roots of a polynomial which does not have enough of them
i a given field.

2.1 Ring of remainders

Let K be a field and let P be a nonconstant polynomial with coefficients in K.
We denote its degree by d. Endow the vector space E C K[X] of polynomials
with degree < d with a ring structure in the following way:

— addition, with its identity element 0, is given by the vector space struc-
ture;

— the identity element for the multiplication is the constant polynomial 1;

—if A and B are two polynomials in E, one defines the multiplication
A x B as the remainder in the Euclidean division of the polynomial AB by
the polynomial P.

Let us show that this actually defines a ring. First of all, it is obvious that
(E,+,0) is an abelian group. The internal law * is obviously commutative;
moreover, 1 x A = A« 1 is the remainder in the Euclidean division of A by P,
so is equal to A since deg A < d = deg P. This shows that 1 is the identity for
the law *. To show associativity, consider the equations AB = PQ, + A*x B
and (A * B)C' = PQ2 + (A* B) % C obtained from Euclidean division, so that

ABC = (PQ1+ A+« B)C = PQ:C + PQy+ (AxB)xC
=P(Q1C+ Q)+ (AxB)«xC.
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This shows that (A% B)#*C is the remainder in the Euclidean division of ABC
by P. Similarly, Ax (B« C) is the remainder in the Euclidean division of ABC
by P, so is equal to (A*B)*C. The law « is thus associative. The distributivity
is shown in the same way: considering the equations AB = PQ; + A * B and
AC = PQs + A % C obtained by Euclidean division, one deduces that

AB+C)=AB4+ AC=P(Q1+Q2)+AxB+AxC.

Hence, the remainder in the Euclidean division of A(B + C) by P is equal to
Ax B+ AxC, which gives us the equality A« (B+C)=A*B+ AxC.

Let us also remark that mapping the element ¢ € K to the constant
polynomial a € F defines a ring homomorphism K — FE.

Definition 2.1.1. The ring that we just constructed is denoted K[X|/(P).

This is the ring of remainders of Euclidean divisions by P. As soon as we
are familiar with this new ring, we will drop the symbol % and just denote
multiplication as usual.

Proposition 2.1.2. Let P be a nonconstant polynomial in K[X]. The follow-
ing properties are equivalent:

a) the ring K[X]/(P) is a field;

b) the ring K[X]/(P) is an integral domain;

c) the polynomial P is irreducible in K[X].

Proof. Implication a)=-b) is obvious. Assume b). If P = QR in K[X], for two
polynomials @ and R with degrees < deg P, one has @« R =0 in K[X]/(P),
which contradicts the hypothesis that K[X]/(P) is an integral domain, so P is
irreducible in K[X], hence ¢). Finally, assume c¢). Let A be a nonzero element
of K[X]/(P), viewed as a polynomial of degree < deg P; we have to show that
A has an inverse in K[X]/(P). Since P is irreducible and A is not a multiple
of P, they are coprime and Bézout’s relation (Corollary 2.4.2) gives us two
polynomials U and V in K[X] such that UA+ VP =1. It U = PQ + U; is
the Euclidean division of U by P, then U; * A = 1, which shows that A is
invertible in the ring K[X]/(P). O

Let P be an irreducible polynomial in K[X] and consider the field exten-
sion j: K — K[X]/(P) that we have just defined. Let 2 denote the polynomial
X viewed as an element in K[X]/(P). By construction, for every polynomial
A € K[X], A(z) is the remainder in the Euclidean division of the polynomial
A(X) by the polynomial P. In particular, P(z) = 0. In other words, we just
defined an extension of the field K in which the polynomial P has a root. The
next theorem claims that this is actually the “best” way of doing it. In fact,
this ring K[x]/(P) satisfies a universal property.
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Theorem 2.1.3. Let K be a field and let P be a polynomial in K[X]. Let
us denote the ring K[X]/(P) by A and let j: K — A be the canonical ring
homomorphism. Now leti: K — B be a ring homomorphism andy an element

in B such that P(y) = 0. Then there exists a unique ring homomorphism
f+ A— B such that foj =1 and f(x) =y.

This is sometimes represented by a diagram

K—1-54

|
\ I f
‘ <

B

where the dotted arrow f: A — B is the one whose existence is claimed by
the theorem.

The idea of the proof is not complicated, yet requires understanding of
what we did during the construction of K[X]/(P). We started with the
ring K[X] in which we have a new element x = X, but this satisfies no
relation at all and it is not a root of P. Then we changed the rules in a clever
way by imposing P(x) = 0. Some of the consequences of P(z) vanishing come
from Euclidean division: if A = QP + B, then the relation P(z) = 0 forces
A(z) = B(z). A posteriori, the validity of the given construction actually
means that all consequences are obtained from Euclidean divisions.

Proof. If f(z) = y, one must have f(Q(x)) = Q(y) for any polynomial Q €
K[X], and in particular for any polynomial with degree < deg P. That shows
that there exists at most one homomorphism f satisfying f o j = ¢, and that
if it actually exists, it has to be given by the map

[+ KIX]/(P) = B, Q(X)— Qy).

(Recall that an element of K[X]/(P) is really a polynomial with degree <
deg P.) Let us define f in this way. We now have to prove that f is a ring
homomorphism. It is obviously a morphism of vector spaces and it satisfies
foj=1. Moreover, if @ and R are two polynomials in K[X] with degrees
< deg P, let us write the Euclidean division of QR by P, say, QR = PS+Q«R.
Then, since P(y) =0 in B,

Q= R) = (Qx*R)(y)

|
)
*
=
S
+
=
S
2
S

which shows that f is a ring homomorphism. (]

To sum up the construction of this section, let us introduce a definition.
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Definition 2.1.4. If i: E — F and j: E — F' are two extensions of a
field E, a homomorphism of extensions from F’ to F is a field homomor-
phism f: F' — F such that f o j =1i.

A bijective homomorphism of extensions is called an isomorphism.

Theorem 2.1.5. Let K be a field and let P be a irreducible polynomial with
coefficients in K. There ezists a finite field extension K — K1 and a root x
of P in Ki such that

a) K; = Klz|;

b) If K — L is a field extension, the set of morphisms of extensions from
K; to L is in bijection with the set of roots of P in L, this bijection being
given by f— f(x).

2.2 Splitting extensions

Definition 2.2.1. Let K be a field and let P be a nonconstant polynomial in
K[X]. A splitting extension of P is a field extension j: K — E such that:

a) over E, P can be decomposed as a product of linear factors; explicitely,
if d is the degree of P and if ¢ denotes its leading coefficient, then there exist

Z1,...,2q in E such thatP—cH( —Z);
b) as a field, E is generated by the x;, that is, E = K(x1,...,24).

In other words, a splitting extension of an irreducible polynomial P is an
extension which contains all of “the” roots of P (this is condition a) and
which is “minimal” for that property (this is condition b).

Theorem 2.2.2. Let K be a field and let P be a nonconstant polynomial in
K[X].

a) There is a splitting extension for P.

b) Any two such extensions are isomorphic: if j: K — E and j': K — F’
are two splitting extensions of P, there exists an isomorphism of fields f: E —
E’ such that foj =7

Proof. Let us begin with a very simple remark: let X — E be a splitting
extension of P and let « be a root of P in E. This allows us to write P =
(X — @)@, where @ is a polynomial with coefficients in K[a]. It is then clear
that E is a splitting extension of the polynomial @ over the field K[a]. This
remark gives the idea of the proof of the theorem: if we know how to construct
K[a], we will obtain a splitting extension E by induction. And we know
precisely how to define a field Ka]; that was the main result of the last
section.
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Let us now show a) and b) by induction on the degree of P. If deg P = 1,
it suffices to let F = K. Let @ € K[X] be an irreducible factor of P. By
Theorem 2.1.5, there exists an extension K — K; and an element x; € K3
such that a) Q(x1) = 0; b) K1 = K|x1]. Then let P; be the quotient of P by
X — a1 in the ring K;[X]. By induction, the polynomial P; admits a splitting
extension over K7, say K1 — FE. The composed extension K — F is a field
extension in which P is a product of factors of degree 1. Moreover, if xs, ..., x4
are the roots of P, in E (set d = deg P),

E=Ki(xo,...,xq) = K(x1)(z2,...,24) = K(x1,...,24),

so that F is generated by the x; over K. Hence F is a splitting extension of P
over K.

Let K — E’ be another splitting extension of P and let us define an iso-
morphism of extensions from E to E’. By hypothesis, the chosen irreducible
factor @ of P has a root 2} in E’. By Theorem 2.1.5, there exists a homo-
morphism of extensions f1: K1 — K7, where K{ = K|[z}] is the subfield of E’
generated by ). As f; is surjective, it has to be an isomorphism and this
isomorphism maps the polynomial P; to the polynomial P{ = P/(X — z).
The composite extension K; — K| — E’ is therefore a splitting extension
of the polynomial P/(X — x1). By induction, the two extensions K; — E
and Ky — FE’ are isomorphic and there exists an isomorphism f: F — FE’
extending the isomorphism f;: K7 — Kj. O

2.3 Algebraically closed fields; algebraic closure

Definition 2.3.1. One says that a field K is algebraically closed if any non-
constant polynomial of K[X] has a root in K.

By induction on the degree, we see that this statement is equivalent to
saying that any polynomial is split in K. The constructions of this chapter
also show that a field is algebraically closed if and only if it has no nontrivial
algebraic extensions (that is, if j: K — FE is an algebraic extension, j is
a isomorphism). One direction is clear. If K is algebraically closed and if
j: K — FE is an algebraic extension, let « be an element of F, P its minimal
polynomial. By hypothesis, P is split in K: there exist elements x1,...,x,
in K such that P = (X —21)...(X —z,). Since P(x) = 0, z is one of the z;
(more precisely one of the j(x;)). This shows that j is surjective and hence
an isomorphism. For the other direction, let P be a nonconstant polynomial
in K[X] and let @ be an irreducible factor of P. We showed that the ring
K[X]/(Q) is an algebraic extension of K with degree deg Q. Since K has no
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nontrivial algebraic extensions, deg @ = 1, so that @ has a root in K, and so
does P.

Definition 2.3.2. An algebraic closure of a field K is an algebraic extension
j: K — 2, where £2 is an algebraically closed field.

Theorem 2.3.3 (Steinitz, 1910). Ewvery field has an algebraic closure; two
algebraic closures of a field are isomorphic.

There are two types of algebraic closures: those that one can see, like the
algebraic closure of the field of real numbers (which is the field of complex
numbers), and those which are constructed by a transfinite procedure, as in
the general proof of the existence of an algebraic closure.

Theorem 2.3.4. The field C of complexr numbers is algebraically closed.

Despite its famous name, “the fundamental theorem of algebra,” this is
really a theorem from analysis. Let me offer you three proofs. The first one is
short and frankly analytic. The second one looks as if it were algebraic, but
analysis is hidden in the use of the “intermediate value theorem.” The third
one comes from topology.

3

First proof. Let P € C[X] be a nonconstant polynomial with no root in C.
Let us write it P = a, X™ + -+ + ag, with a,, # 0 and n > 1. Then, for
any z € C such that |z| > 1, one has

|P()| 2 lan] [2]" = (jao| + - - + lan—1]) [z]" "
1
> 1271 (Janl = ylaal +++-+ enca))).

In particular, |P(z)| goes to 400 when |z| — oo. It follows that the function
1/P is bounded on C and holomorphic everywhere (P does not vanish). By
Liouville’s theorem, it is constant, hence we have a contradiction. O

Second proof. Let P € C[X] be a nonconstant polynomial. Observe that the
polynomial Q(X) = P(X)P(X) has real coefficients. If we show that it has
a complex root z, then either P(z) = 0, or P(Z) = P(z) = 0, so that P
also has a complex root. Therefore it suffices to show that every nonconstant
polynomial P € R[X] has a complex root, which we will prove by induction
on the greatest power of 2, v5(P), which divides the degree of P.

If this power is 0, that is, if deg P is odd, the limits of P(x) when x — +oc0
are +0o and —oo (depending on the sign of the leading coefficient of P). It
follows from the intermediate value theorem that P has a real root.

Assume the result is established for polynomials P such that v»(P) < n
and let P be a polynomial in R[X] with v5(P) = n. Let {2 be an extension
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of C in which P is split and let us denote its roots by (&;)1<i<deg P- Let ¢ be
a real number. For 1 < ¢ < j < deg P, set z; ;.. = & + & + c&;&; and let us
introduce the monic polynomial @ € 2[X] whose roots are the z; ;... First of
all, one has deg Q = deg P(deg P — 1)/2, hence v5(Q) = v2(P) — 1. Moreover,
Q has real coefficients. Indeed, these coefficients are given by polynomials with
integer coefficients in the §;, and these polynomials are invariant under every
permutation of the variables. It follows from Theorem 1.5.3 on symmetric
polynomials that the coefficients of ) can be expressed as polynomials with
real coeflicients in the elementary symmetric polynomials of &i,...,&des P,
that is, in the coefficients of P. In particular, the coefficients of @) are real
numbers. By induction, () has at least one root in C.

This is true for every value of c. As R is infinite, there exists at least one
pair (7, j) and two real numbers ¢ # ¢’ such that &+&;+c&;€; and &4+ &
both are complex numbers, from which we deduce that a = §;4¢§; and b = §¢;
belong to C. They are roots of the polynomial R = X? — aX + b, whose
discriminant A = a? — 4b is a complex number. If we show that A is a square
in C, it will follow that the two roots of R, namely & and £;, are complex
numbers.

Let A = p+iq. The equation (z +iy)? = A is equivalent to the equations

22—y’ =p and 2zy=gq,

hence (22 + y?)? = p? + ¢? and 22 + 3% = \/p? + ¢2. One obtains for 22 and
y? the following (nonnegative) values:

1 1
2’ = §(p+ VPE+¢?) and y® = 5(—p+ VP + ¢?),

hence values for x and y, by accounting their signs so that ¢ = zy/2.
This shows that & and &; are complex numbers and consequently that the
initial polynomial P has a root in C. By induction, the theorem is proved. O

Third proof. Again let P be any nonconstant polynomial with coefficients
in C. If z € C, we will denote by v(z) the cardinality of the finite set P~1(z).
The goal is to show that v(0) > 0 and we will in fact show that v(z) > 0 for
every z € C.

Let A C C be the set of z € C such that P'(z) = 0, U = C\ A and
V = C\ P(A). The sets U and V are the complementary subsets of finite sets
in C, so they are open and connected (ezercise).

If w =2+idy and P(u) = A(x,y) + iB(z,y), one deduces easily (for
example, from Cauchy’s formulae in the theory of analytic functions) that

P = det (8A/8x 8B/89c> |

0A/0y OB/dy
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Therefore, the implicit function theorem for functions R? — R? implies that
for any u € C with P'(u) # 0, P defines a diffeomorphism from a neighbor-
hood of u to a neighborhood of P(u).

Now let z € V. For every u € P~1(z), one has P'(u) # 0, so that there
exists a neighborhoods W, and {2, of z such that P induces a diffeomorphism
Wy — 2,.Let 2= (] {2 this is a neighborhood of z and any w € 2

ueP~1(z)
has at least v(z) preimages by P, one in each W,,, u € P71(2). In particular,
the set VT of z € V such that v(z) > 0 is open in V.

But it is also closed: let (z;) be any sequence of points in V' with v(z;) > 0
such that z; — 2z € V. Let us choose for every j an element u; € C such
that z; = P(u;). Since the sequence (z;) is bounded and |P(u)| — +oco when
|u] — 400, the sequence (u;) is bounded too. It thus has a limit point u € C.
Since P defines a continuous function, P(w) is also a limit point of the sequence
(P(uj)). Necessarily P(u) = z, and hence v(z) > 0. This shows that VT is
closed in V.

As V is connected, the nonempty subset VT cannot be both open and
closed unless it is equal to all of V. In other words, v(z) > 0 for every z € V.

If = ¢ V, there exists by definition u € A such that P(u) = z and v(z) > 0.
Finally, v(z) > 0 for every z € C. O

From an algebraically closed field, it is easy to construct an algebraic
closure for any of its subfields.

Proposition 2.3.5. Let §2 be an algebraically closed field and let K be a sub-
field in §2. Let K be the set of elements in 2 which are algebraic over K.
Then K C K is an algebraic closure of K.

For instance, the set of algebraic numbers in C is an algebraic closure of Q.

Proof. The extension K C K is algebraic by construction, for every element
in K is algebraic over K.

Let P € K[X] be a nonconstant polynomial and let us show that it has a
root in K. As K C {2 and as {2 is algebraically closed, P has a root x in 2.
The element x is algebraic over K and since K is algebraic over K, x is also
algebraic over K (Theorem 1.3.16). Therefore z € K and P has a root in K,
as was to be shown. O

The proof of Steinitz’s theorem is not very illuminating and relies upon
a “transfinite induction” argument, hence requires the axiom of choice as
soon as the field is not countable! We have shown how to add the roots of
one polynomial, and all we have to do is to add roots for all of them, which
requires the set of polynomials to be well-ordered.
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Proof of Steinitz’s theorem. Let K be a field whose algebraic closure is to be con-
structed. We are going to define an algebraic extension K — {2 of K in which every
polynomial of K[X] is split. It will follow that {2 is an algebraic closure of K. Let P
be a polynomial P = X™ + an_1 X" ' 4+ - 4 ao with coefficients in 2. We have
to show that P has a root in 2. We may assume that P is irreducible. Since every
coefficient a; is algebraic over K, the subfield L = KJao,...,an—1] C 2 which they
generate is a finite algebraic extension of K. Necessarily P is irreducible in L[X].
Let us then introduce the finite algebraic extension L — L[X]/(P), in which P has
a root «, with minimal polynomial P. Since L is algebraic over K, « is algebraic
over K. Let @ denote its minimal polynomial in K[X]. As Q(«) = 0, Q is a multiple
of P in L[X]. By construction, @ is split in 2. It follows that P is split too, so it
has a root in {2.

The method of constructing {2 consists of patiently “adding” the roots of every
irreducible polynomial in K[X]. To that aim, endow the set & of all irreducible poly-
nomials with a well-ordering <, that is, a total ordering such that every nonempty
subset of & admits a least element. The standard ordering on N is a well-ordering
and the existence of a well-ordering on any set is equivalent to the axiom of choice,
or to Zorn’s lemma. If K is countable, the set of all irreducible polynomials with
coefficients in K is also countable and enumerating them gives us a well-ordering.

Once a set is well-ordered, the induction principle can be stated and proved in
quite the same way as the classical induction over the integers. Let (X, <) be a well-
ordered set and let & be a property of elements in X. Assume that the following
assertion holds (induction hypothesis):

“Let © € X; if, for every y € X, y < z, Z(y) is true, then P (x) is
true.”

Then Z(x) is true for every x € X. (Otherwise, the set of x € X such that Z(z)
does not hold admits a smallest element z¢. By definition, for every y < zo, Z(y)
is true. By the assertion within quotes, & (x) is true; thus we have a contradiction.
The first step of the induction, i.e. , checking & for the minimal element of X,
follows by applying the induction hypothesis with £ = min(X).)

Let us now show the existence of a family of algebraic extensions jp: K — 2p,
for P € &, in which P is split, and of homomorphisms jg: 2 — {2p where P
and @ are two polynomials in & with @ < P, satisfying jp = jg 0 jo. (This means
that (2p is an extension not only of K but also of all 2g for @ < P.)

To show this by induction, two constructions are needed, where P € &.

— The first, which I do not want to do formally, is an inductive limit 2<p of
all extensions 2o with @ < P. This is essentially the union of all these fields;
to compute in (2p, one chooses some {2g where everything is defined and one
computes there. Using the homomorphisms jg,, one sees that the output of those
calculations is essentially independent of the field where they were done. One has
moreover homomorphisms jSP: g — 2«p.

— The second consists in adding to the field 2« p all roots of P; one defines {2p as
a splitting extension of the polynomial P over the field {2<p, hence a field homomor-
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phism j;P 1 2op — 2p which, composed with jSP, gives us the homomorphisms
jg: 2 — 2p we sought.

Once these (£2p, jg) are shown to exist, we define {2 as the inductive limit of all
2p.

To prove that two algebraic closures are isomorphic, we will use a theorem
from the next chapter. Let K — 2’ be an algebraic closure of K. We want to
show that there exists a K-homomorphism from the algebraic closure we just con-
structed 2 to 2’. Let us show by induction that there exists, for every P € &, a
K-homomorphism ap: 2p — 2’ such that ap ojg = aq if Q < P. Let us now
fix P. The homomorphisms ag: 29 — 2’ for Q < P, Q # P, define a field ho-
momorphism from (25 p, which is the inductive limit of the 2¢ for Q < P, to §2'.
Applying Theorem 3.1.6 to the field 2p (which is a splitting extension of the poly-
nomial P over {2<p), there exists a morphism of field extensions 2p — 2" which
extends the morphism 2<p — 2.

Together, the ap define a K-homomorphism «: 2 — §2'. Like any field homo-
morphism, « is injective. Let us show it is surjective. Let = be any element in (2’
By definition, x is algebraic over K so let P € K[X] be its minimal polynomial. As

2 is an algebraic closure of K, P is split in 2. Writing P = [[ (X — z;) in £2[X],
i=1

one then has

(@]
I
B
&
I
—.

(z — a(zi))

so that x is one of the a(z;) and « is surjective, q.e.d. O

2.4 Appendix: Structure of polynomial rings

Recall that an ideal of a ring A is a subgroup I C A such that for any a € A
and b€ I, ab e I. If a is any element of A, the principal ideal generated by a
is the set of all ab for b € A. We denote it aA or (a). Conversely, we say that a
is a generator of the ideal (a).

Theorem 2.4.1. For any ideal I in K[X], there exists a polynomial P €
K[X] such that I = (P).

An integral domain in which every ideal is a principal ideal is called a
principal ideal Ting.

Proof. We essentially have to redo the argument of Proposition 1.3.9 of which
this theorem is a particular case: just take for I the set of all polynomials
P € K[X] such that P(z) = 0. If I = {0}, simply set P = 0. Otherwise, let
d > 0 be the smallest degree of a nonzero element in I and let P € I be a
polynomial of degree d. Since I is an ideal, PQ € I for any Q € K[X], so
(P) C I. Conversely, let A be an element in I and consider the Euclidean
division A = PQ + R of A by P. One has PQ € I, so that R = A — PQ
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belongs to I. By definition, deg R < deg P = d. The definition of d implies
R=0and A= PQ € (P). O

Also notice that a nonzero ideal in K[X] has many generators. However, if
P and @ are two generators of a nonzero ideal, then there exists a constant A €
K* such that P = AQ@. Indeed, P and @ divide each other; writing P = RQ
and @ = SP implies that R and .S are nonzero constants. Consequently, every
nonzero ideal of K[X] has a unique generator which is a monic polynomial.

Corollary 2.4.2 (Bézout’s theorem for polynomials). Let A and B
be two polynomials. The set I = (A, B) consisting of all AP + BQ with P,
Q € K[X] is an ideal in K[X]. If D is a generator of this ideal, then

a) there exist U and V € K[X] such that D = AU + BV;
b) D divides A and B;
c) every polynomial dividing both A and B divides D.

Consequently, D is a greatest common divisor of A and B. Assume that A
and B are not both equal to zero. Then the ideal (A, B) is nonzero and its
generators differ only by the multiplication by a nonzero element of K. In this
case, we will agree to call the g.c.d. of A and B the unique monic polynomial
generating (A, B). Recall that two polynomials A and B are said to be coprime
if their only common divisors are the constant polynomials. By the preceding
corollary, this amounts to saying that there exist two polynomials U and
V such that AU 4+ BV = 1, a statement sometimes referred to as Bézout’s
theorem.

Proof. 1leave as an exercise to the reader the task of checking that I is actually
an ideal in K[X]. By the very definition of D, D € I and there exist U and
V in K[X] such that D = AU + BV, hence a).

Since A = A-1+B-0, A € I and there exists P € K[X] such that A = PD.
Similarly, there exists Q € K[X] such that B = QD. It follows that A and B
are both multiples of D, so that b) holds.

Finally, if C' divides A and B, write A = CP and B = CQ for some
polynomials P and Q. The relation D = AU+ BV implies D = CPU+CQV =
C(PU + QV), so that C divides D, which shows c¢). O

From that, one deduces that the g.c.d. of two polynomials does not depend
on the field in which it is computed.

Proposition 2.4.3. Let K C L be a field extension, and let A and B be two
polynomials in K[X]. Then the g.c.d. of A and B as polynomials in L[X] is
equal to the g.c.d. of A and B computed in K[X].
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Proof. Let D be the g.c.d. of A and B in K[X] and let E be their g.c.d.
in L[X]. As D divides A and B in K[X], it divides them in L[X] and D
divides E. To show the other divisibility, choose U and V' in K[X] such that
D = AU + BV. As E divides A and B, it has to divide D! Since D and F are
monic polynomials dividing each other, they are equal. a

One also deduces from Bézout’s theorem the so-called Gauss’s lemma,
which is a crucial point in the proof that polynomial rings have the “unique
factorization” property.

Lemma 2.4.4 (Gauss’s lemma). Let P be
an irreducible polynomial in K[X]|. Let A and C.E.GAUSS ¥1777 11855
B be two polynomials in K[X] such that P di-
vides AB. Then P divides A or P divides B.

Proof. Assume that P does not divide A. Since
P is irreducible, its only divisors are the con-
stant polynomials A € K* and the multiples
AP for A € K*. Among those, only the con-
stants divide A, so that A and P are coprime.
By Bézout’s theorem, we may find polynomials
U and V such that AU 4+ PV = 1. Multiplying
this relation by B, one gets ABU + PBV = B. As P divides AB, one may
write AB = PQ. Finally, B = P(QU + BV) is a multiple of P, q.e.d. a
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Theorem 2.4.5. Any nonzero polynomial A in K[X] admits a decomposition

m

A=a ] P" witha € K*, m >0, P; distinct monic irreducible polynomials,
i=1

and n; positive integers.

’
m ’
Moreover, if A = da' [] Q;’ is another decomposition, one has a = a,
j=1

m =m’' and there exists a permutation o of {1,...,m} such that for every i,
P; = Qo) and n; = n;(i).

One says that the ring K[X] is a factorial ring or a unique factorization
domain (or ring).

Proof. The existence of such a decomposition is shown by induction on the
degree of A. If A is irreducible, one just writes A = aP where P is irreducible
and monic and a is the leading coefficient of A. Otherwise, one may write
A = A; As with two polynomials A; and A, whose degrees are less than deg A,
and we conclude by induction.

Uniqueness is the important point, and to prove that we also argue by
induction. Considering the leading coefficients, we see at once that a = a’. The
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polynomial P; is irreducible and divides A. By Gauss’s lemma, it divides one
of the Q;, say Q4(1). Since Q1) is irreducible, P1 and Q4 (1) are multiples one
of another; being monic, they are equal. Now apply the inductive hypothesis
to A/P1 O

Let us give the general definition of a factorial ring.

Definition 2.4.6. Let A be an integral domain. One says an element a in A
is irreducible if a) a is not invertible in A; b) for any x and y in A such that
a = xy, either x or y is invertible in A.

One says the ring A is factorial if the following two properties hold:

a) for every nonzero element a € A, there exists an integer v > 0, irre-
ducible elements p1,...,p, and a unit w with a = upy ...p, (existence of a
decomposition into irreducible factors);

b) if a =upy...pr and a = vqy ...qs are two decompositions then r = s
and there exists a permutation o of {1,...,r} and units u; (1 < j < 1)
such that for every j, q; = u;ps(;) (“uniqueness” of the decomposition in
irreducible factors).

In a factorial ring, any two nonzero elements have a g.c.d., which is well
defined up to multiplication by a unit. The arguments of this Section show
that any principal ideal ring is a factorial ring. See Exercises 2.6 and 2.7 for
applications.

Theorem 2.4.7 (Gauss). If A is a factorial ring, then A[X] is a factorial
ring too.

The proof begins by describing the irreducible elements in A[X]; besides the
irreducible elements in A, these are polynomials in A[X] whose coefficients are
coprime and which are irreducible as coefficients in K, where K denotes the
field of fractions of A. Now we shall generalize the result proved in Exercise 1.9
to arbitrary factorial rings. Let the content of a nonzero polynomial in A[X]
be the g.c.d. of its coefficients. Then, if P and Q are two nonzero polynomials
in A[X], the content of their product PQ is equal to the product of the contents
of P and @ (up to a unit).

A field is a factorial ring, and so is the ring of integers. The following
important corollary follows by induction.

Corollary 2.4.8. The rings Z[X1,...,X,] and, if K s a field,
K[X1,...,X,], are factorial rings.

2.5 Appendix: Quotient rings

In this section, I explain how the construction of the ring of remainders done
in Section 2.1 can be generalized.



44 2 Roots

The situation is as follows. One is given a ring A and an ideal I of A;
the goal is to construct a quotient ring, which will be denoted A/I, and a
surjective ring homomorphism 7: A — A/I with kernel I. Therefore two
elements a and b have the same image in A/I if and only if their difference
a — b belongs to I; one then says that a and b are in the same residue class
modulo I. (Ezercise: check that this is an equivalence relation.) In Section 2.1,
we considered the case where A = K[X] and I = (P) is the ideal generated
by a polynomial P € K[X]. In that case, the remainder in the Euclidean
division of a polynomial by P gives us a canonical element in the residue
class modulo I of any polynomial in K[X]. When A = Z and I = (n), one
still has a canonical element in each class, for instance, the integers in the set
{0,...,n — 1}. This will be the case in any Fuclidean ring, that is, in any
ring admitting some kind of Euclidean division, but not in general. Such a
difficulty should not bother us too much. The choice of this element has no
importance at all and any element will do. A more elegant way consists of
defining A/I as the set of all residue classes modulo I so that elements of
A/I are just subsets of A; instead of choosing some element, we take them all
together. If a € A, let us denote by @ the class of a in A/I. We define a map
w: A — A/I by the simple formula 7(a) = @.

To say that A/I is a ring and that 7 is a ring homomorphism amounts to
saying that addition and multiplication in A/I are defined to be compatible
with those of A and with the map a +— @. One thus needs to check that if @ = b
and ¢ =d, a+ ¢ = b+ d and @c = bd, for this will allow us to define addition
and multiplication in A/T by the formulae @+ ¢ = a+ ¢ and @ - ¢ = ac. But
(b+d)—(a+¢c)=(b—a)+ (c—d) and bd — ac = (b — a)d + a(d — ¢) are
both the sum of two elements in I, so belong to I. The other axioms of a ring
structure and of a ring homomorphism are checked in the same way.

If I is an ideal in A, it may be interesting to express the algebraic properties
that the quotient ring A/I might possess, in terms of the ideal I.

Proposition 2.5.1.  a) The ring A/I is null if and only if A=1;

b) the ring A/I is an integral domain if and only if I # A and if for any
zandyin A\I, zy & I;

c) the ring A/I is a field if and only if I # A and if the only ideals of A
containing I are I and A.

In case b), one says I is a prime ideal; in case ¢), it is a mazimal ideal.

Proposition 2.5.2. Let A be a principal ideal ring which is not a field. Then
its prime ideals are a) the null ideal (0); b) the ideals generated by a irreducible
element.

Among these, only the null ideal is not mazximal.
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The following abstract theorem concerns the existence of prime or maximal
ideals in an arbitrary ring.

Theorem 2.5.3 (Krull). Let A be a ring. Every ideal of A not equal to A
is contained in a mazrimal ideal.

Proof. Let I be an ideal in A, with I # A. Let us endow A with a well-
ordering <.

We will define by induction increasing families (J;)zea and (I;)zea of
ideals of A, satisfying I C J, C I, # A, as follows.

If x is the minimal element of A, set J~, = I.

Let x € A, distinct from the minimal element of A, and assume that I,

has been constructed for y < z. We first set J, = |J I, ; since the union is
y<x
increasing, observe that J, is an ideal of A. Indeed, let a, a’ € I,; there are

y and y" < x such that a € I, and o’ € I,. Since the ordering < is total, one
has y < ¢/ or ¢ < y. In the first case, I, C I/, hence a + &’ € I; in the
second case, a + a’ € I,,. Consequently, a +a’ € I5,. Let a € I, and b € A.
If y < z is such that a € I, one has ba € I, hence ba € I,,.

Since 1 € I, for y <z, 1 € J, and J, # A. Moreover, J, contains all I,
for y < x, hence J, contains I.

Finally, consider the ideal J,+ (). If it is distinct from A, set I, = J,+(x);
otherwise, set I, = J,.

It remains to set J = |J I. Since the family (I,) is increasing, this is an
yeA
ideal of A, not equal to A. Moreover, for any x € A\ J, one has x ¢ I, hence

A = J, + (z) by construction, and A = J + (z) a fortiori. This shows that
the ideal J is a maximal ideal of A. O

Corollary 2.5.4. Let A be a ring. An element in A is invertible if and only
if no maximal ideal contains it.

Proof. Let I = (a) be the ideal generated by the element a € A. If a is
invertible, there exists b € A such that ab =1, so that 1 € I, hence I = A and
I cannot be contained in a maximal ideal. Consequently, there is no maximal
ideal in A containing a. Conversely, if a is not a unit, I # A. By Krull’s
theorem 2.5.3, there is a maximal ideal containing I and this maximal ideal
automatically contains a. a

2.6 Appendix: Puiseux’s theorem

This appendix is devoted to Puiseux’s theorem, a result which can be
viewed in two different ways:
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— from an analytic point of view, it shows that solutions of a polynomial
equation whose coefficients are holomorphic functions (power series) can be
parametrized and give holomorphic functions in a parameter '/,

— for the algebraist, it describes explicitly the algebraic closure of the field
of meromorphic functions in a neighborhood of the origin.

If r > 0, &/(r) denotes the set of continuous functions on the closed disk
D(0,r) C C whose restriction to the open disc D(0,r) is holomorphic. This
is a ring; by the principle of isolated zeroes, it is an integral domain. For
f e (r), set ||f|]| = sup |f(z)]. This is a norm on & (r), and it defines

z|<r
on it the topology of 1|m|if0rm convergence. A uniform limit of continuous
functions is continuous, and a uniform limit of holomorphic functions is again
holomorphic. It follows that this norm endows &7 (r) with the structure of a
Banach space, and even with the structure of a Banach algebra since one has

£l < [If[lg]| for any f and g in </ (r).
A function f in 7 (r) has the power-series expansion

f(z) = Z apz",
n=0

which converges for |z| < 7, as can be seen, e.g., using Cauchy estimates of
derivatives of analytic functions. Two different functions have two different
expansions, which will enable us to identify elements of &7 (r) to some power-
series. A word on notation: we shall have to manipulate polynomials with
coefficients in &7(r), i.e. polynomials the coefficients of which are functions.
We shall denote by X the polynomial indeterminate, and by z the argu-
ment of functions in &7(r). For example, in the next theorem, P(z¢, X) is the
polynomial of C[X] obtained by evaluating each coefficient of the polynomial
P e o/ (r)[X] at z°.

Theorem 2.6.1 (Puiseux). Let P be a monic polynomial of degree n with
coefficients in </ (r). There exists an integer e > 1, a real number p € (0,7r/¢],
and functions x1,...,x, € & (p) such that

n

Pz, X) = [[(X = 2:(2)).

i=1

In particular, for |z| < r, the n roots of the polynomial P(z) are
parametrized by power series x;(z'/¢) in a fractional power of z. Let us give
some simple examples that show the necessity of introducing such a fractional
power, and also that the radius of convergence of the solutions can be smaller
than the one of the coefficients.

a) The roots of P = X2 — 22X — 1 are
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= (1/2
Z)=Z+\/1+22=1+z+2( )z%
n=1 n
and
1/2 n . 2n
x2(2) =2 — V1422 = 1+Z+Z =1)"z",

two power series converging for |z] < 1.
b) The roots of P = X? — 2(1 + z) are

LA TF e =+ Z (1/ 2) (/22

two power series converging for |z| < 1. In that case, one has e = 2.
Theorem 2.6.1 is proved by induction on n.

Proposition 2.6.2. Let P € o/(r)[X] be a monic polynomial with degree n.
Let Qo and Ry € C[X] be two monic polynomials of degrees < n, such that
P(0,X) = Qo(X)Ro(X). If Qo and Ry are coprime, then there exists p € (0,7]
and two monic polynomials @ and R with coefficients in </ (p), such that
Q(0,X) = Qo(X), R(0,X) = Ro(X) and P = QR.

Proof. This is an application of the implicit function theorem, in its holomor-
phic version. To prove it, however, we will go back to Banach’s fixed-point
theorem.

Set Py = P(0,X) and let P, € &/(r)[X] be such that P = Py + zP;. Let
m = deg Qp, p = deg Ry; one has m + p = n. We are looking for Q and R
such that Q = Qo + zU and R = Ry + zV, where U has degree < m and V'
has degree < p. The equation P = QR can be rewritten as

P =URy+VQy+zUV.

If @ is an integer, identify C* with polynomials of degree < a and introduce
the linear map : C™ x CP — C™*? defined by (U, V) = URog + VQo. It is
injective, for if (U, V) =0, Ry divides VQq but is prime to Qy, so it divides
V. Since deg V' < p = deg @y, that forces V = 0. Similarly U = 0. Like any
injective linear map between vector spaces of the same finite dimension, ¢ is
an isomorphism, the inverse of which, ¢~1: C™*P — C™ x CP, is also linear.

Similarly, identify </ (r)* with polynomials of degree < a with coefficients
in &/ (r) and let us consider the map ®: o7 (r)™ x o (r)P x & (r)"™*? given by
S(U,V)=URo+VQop, U and V being polynomials with coefficients in <7 (r)
of degrees < m and < p. By construction, one ®(U,V)(z) = o(U(z),V(z))
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for any z € D(0,7). The map @ is bijective and its inverse is the map
U ()" — o (r)™ x ()P defined by ¥(P)(z) = ¢(P(z)). The equation
P = QR can thus be rewritten as

(U, V) =0(P, — 2UV).

The right hand side of this equation will be denoted by T'(U, V).

For any integer a, endow &7(r)® with the norm |(f1,...,f.)] =
[ f1ll + -+ + || fall- Again, this a Banach space. The linear maps ¢ and ¥ are
continuous and Lipschitz with these norms. In fact, if C® is endowed with
the norm ||(21,...,24)|| = |21] + - - + |2a|, then their Lipschitz constants are
the same as those of ¢ and ¢~ 1. Set A = [|¥|.

For any U € &/ (r)™ and V € &/ (r)P, one has |[UV] < ||U||||[V]]. In fact,
writing U = fo+ fiX+ -+ fmaaX™ tand V =go+ g1 X+ -+ gp1 XP71,
one has

m+p—1 m+p—1
OVIi= > 1 D0 fege| < D2 > el llgel
7=0 k4-Ll=j 7j=0 k+4+L=j
m—1 p—1
< DAY Ngell < UV
k=0 £=0

It follows that the map T from o7 (r)™ x o/ (r)?P to itself satisfies
1T, V)| < AllPu]l + Ar [U[[ V]

If R and r are real numbers satisfying R > A|Py|, and if r < r; =
(R — A||Py1]|)/AR?, then the ball Br defined by ||U|| + ||V < R in &/ (r)™*P
is stable under 7.

Moreover, if (U, V) and (U’,V’) € Bg,

IT(U, V) = T, V")|| = |#(—2UV +tU'V")|
< Ar||UV —U'V/|
<A UV =V + V(U -U")|
< ArR(|U =V + [V = V'])).

Consequently, if r < 7 = 1/AR, T is a contracting map.

It remains to observe that we can fix some R > A || P || and then choose p <
min(r, ry, 7). With those choices, the linear map T from o7 (p)™ x o (p)? to
itself stabilizes the ball Br defined by ||U|| + |V]] < R and is contracting
there. By Banach’s fixed point theorem, 7" has a unique fixed point in Bg,
hence a factorization P = QR in the ring </ (p)[X]. O
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This first step (Proposition 2.6.2) will allow us to assume that P(0, X)
has a unique root. Consider a factorization P(0,X) = [[(X — z;)™, with

J
distinct complex numbers z;; by the Proposition, it extends to a factorization
P =[] F;, with P; € &/ (p)[X] and P;(0,X) = (X — 2;)™. Assume that for

J
any j, the polynomial P; satisfies the conclusion of Puiseux’s Theorem, i.e. ,
that there exists e; > 1, and functions z;; € &/(p;), 1 < i < n;, such that

n;
Pi(z, X) = [[(X = 2;.(2)).
Jj=1
Then we may set e =1.c.m.(eq,...,e;,...) and f = j = e/e;, so that
HP f] €j X HH -1']1 ))’

j =1

which proves the assertion of Puiseux’s theorem for P, with p = min(p;/fj ).
Consequently, we can assume that P(0, X') has a unique root a.. Replacing
the polynomial P = X" +a; X"~ ! + ... by P(X — aj/n), we may moreover
assume that the coefficient of X! in P is zero, which means that the sum
of all roots of P is zero. In particular, « = 0 and P(0, X) = X™.
The next proposition refers to the order of vanishing at zero of a nonzero

function f € &7(r): if its expansion as a power series is f = Y a,2", the
n=0
order of vanishing at zero of f is the smallest integer n such that a, # 0. It

is also the highest power of z dividing f. We will denote it by v(f).
Proposition 2.6.3. Let P = X" +a, X" 24+ --- +a, be a monic polynomial
with coefficients in o (r). Let v = 21<nl£1 v(a;)/j; write v =m/e where m and
IIN

e are two coprime nonnegative integers. Then there exists a monic polynomial
Q, of degree n, with coefficients in < (r'/¢) such that

2MQ(z, X) = P(z¢, 2" X).
At =0, Q(0,X) £ X™.

Before we prove this proposition, let us finish the proof of Puiseux’s the-
orem. Since Q(0,X) # X", and since the sum of its roots is zero, not all of
the roots of Q(0, X) are equal and Proposition 2.6.2 allows us to factor @ as
Q = RS (in a certain </(p)). By induction, we thus see that there exist an
integer f > 1, a real number p and power series y;(z) € &/(p) such that

n
QG X) = TT(X —y;(=

J=1
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Thus N
P(z¢F, 2 X) H (X —y;(z

and
n

EfX :H — 2™ y] f))a

so that the z; = zmyj(zf) are the power series we were searching for.

Proof of Proposition 2.6.3. In the expansion

a;(2¢)zmn =) xn=i,

M-

P(z¢,2"X) =
7=0

the coefficient aj(ze)zm(”_j ) is a power series whose order of vanishing at 0 is
equal to ev(a;)+m(n—j) = mn+e(v(a;) —jv) = mn. Therefore one can find
a power series b; € @ (r'/¢) such that a;(z¢)t™("=7) = z™"b;(z). Moreover,
if the integer j > 2 is chosen so that v(a])/j = v, one has v(b;) = 0, which

means b;(0) # 0. Consequently, Q(0) # X™. 0
Exercises

Exercise 2.1. a) If di,...,d, are positive integers, show that di!...d,! divides
(dv+---+d)

b) Following the steps of the construction of a splitting extension for a polynomial
of degree d, show that it is a finite extension and that its degree divides d!.

Exercise 2.2. Let p be a prime number, p > 3.

a) Show that [][ a= —1 (Wilson’s theorem). — Hint: in the product, group

a€(Z/pZ)*

a and 1/a, provided they are distinct.

b) Fora € (Z/pZ)*,1et So = {a, —a,1/a,—1/a}. Show that for a and b in (Z/pZ)*,
either S, = Sy, or Sa NSy = 0.

c) Computing the cardinality of S, according to whether a® = +1 or not, show
that —1 is a square in (Z/pZ)* if and only if p = 1 (mod 4). If it exists, can you
find a formula for a square root of —17

Exercise 2.3. An algebraically closed field is infinite.

Exercise 2.4. Let K be a field, p a prime number and let a be an element in K.
Show that the polynomial X? — a is reducible in K[X] if and only if it has a root
in K. (If X? —a = P(X)Q(X), what can P(0) be equal to?)
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Exercise 2.5 (Gauss). For n € N*, let ¢, € C[X] be the monic polynomial with
simple roots, given by the primitive nth roots of unity in C.

a) Show that [] #q = X" — 1. Deduce by induction that for any n, &, € Z[X].
d|n
Let ¢ be any primitive nth root of unity and let P € Q[X] be its monic minimal
polynomial.
b) Show that P has integer coefficients and that it divides &,,.

c) Let p be a prime number. Show that there exists a polynomial Q € Z[X] such
that P(X?)—P(X)? = pQ(X). Prove the existence of b € Z[(] such that P(¢?) = pb.

d) Let p be a prime number that does not divide n. If P((?) # 0, show by differ-
entiating the polynomial X™ — 1 that there exists ¢ € Z[¢] with n¢" ™! = pc. Deduce
from that a contradiction, hence P(¢?) = 0.

e) Show that P = @, that is the polynomial &, is irreducible in Q[X].

Exercise 2.6. Let A be the subring Z[i] in C (ring of Gaussian integers).

a) Show that for any a and b in A, with b # 0, there exist ¢ and r in A with
a=bg+r and |r| < |b].

b) Show that A is a principal ideal ring. In particular, it is a factorial ring.

c) Let p be a prime number. Show that one of the following is true: 1) either
p is irreducible in A; or 2) there exist a and b in N such that p = a? + b%, and
p = (a+1ib)(a—1b) is a decomposition of p as a product of irreducible elements in A.

d) Show that prime numbers congruent to 3 modulo 4 are irreducible in A. Show
that 2 is not.

e) Let p be a prime number. Define a ring isomorphism from A/pA to the ring
(Z/pZ)[X]/(X? + 1). Deduce that p is reducible in A if and only if the polynomial
X2 41 has a root in the field Z/pZ. By Exercise 2.2, this happens exactly when p
is equal to 1 modulo 4.

In particular, prime numbers equal to 1 modulo 4 are sums of two squares of
integers (Fermat, 1659).

Exercise 2.7 (Every integer is a sum of four squares). Let H be the noncom-
mutative field of quaternions. We identify it with Q*, the canonical basis of which is
denoted (1,1, 4, k) and with multiplication defined by i> = j2 = k? = —1 and ij = k.

a)Ifz=a+bi+cj+dk € H, set Z =a—bi — ¢j — dk and N(z) = zz. Show
that N(z) = a® +b® 4 ¢ + d* and that N(zz') = N(2)N(z'). Conclude that if two
integers are sums of four squares of integers, then their product is again a sum of
four squares.

b) Show that the set Ao of z + yi + 25 + tk € H with z, y, z, t € Z is a (noncom-
mutative) subring of H.

c) Let e = (1 4+ i+ j + k)/2. Compute 2. Show that the set A of all @ € H such
that either a € Ag or a — ¢ € Ao is a subring of H.

If z € A, show that N(z) € N. (This is clear for z € Ag. Otherwise, find

u=3(+l1+i+tj+k) € A" and b € A with z = u+ 2b. Observe that zu~" belongs
to Ag.) Show also that z € A is invertible if and only if N(z) = 1.
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d) Show that A is a Euclidean ring: if a and b € A, with b # 0, find g and r € A
with N(r) < N(b) and a = bg + r. Deduce that any (left) ideal in A is a principal
ideal (of the form Az for some z € A).

e) Let p be an odd prime number. Show that there exist integers a and b such that
a® +b® 4 1 is divisible by p. (How many elements of Z/pZ are of the form z* + 1?
and of the form —4??) Let I be the left ideal in A generated by p and 1 + ai + bj.
If I = Az, show that N(z) = p and conclude that p is a sum of four squares of
integers.

f) Show that for any integer n > 0, there exist integers a, b, ¢ and d such that
n = a® 4+ b*> + ¢ + d?; any positive integer is a sum of four squares of integers
(Lagrange, 1770).

Exercise 2.8. Prove that the only ideals of a field are itself and the null ideal.
Conversely, show that a nonzero ring admitting only these two ideals is a field.

Exercise 2.9. Let A be the subring Z[/—5] in C.

a) Show that any element of A can be written in a unique way as a + by/—5 with
integers a and b. Show that the map N: A — Z defined by N(a+ byv/—5) = a® + 5b°
satisfies N(zy) = N(z)N(y).

b) Show that an element = € A is a unit if and only if N(z) = 1.

c) Show that the elements 2, 3, 1 + /=5 et 1 — /=5 are irreducible in A.

d) Conclude that A is not a factorial ring.

Exercise 2.10. Let A be a ring.

a) Let I and J be two ideals of A. Show that the set I + J consisting of sums a+b
with @ € I and b € J is an ideal of A.

b) Let I be an ideal in A. Let R be the set of a € A such that there exists n € N
with a”™ € I. Show that Ry is an ideal in A, and that it contains I. If I # A, show
that R; # A.

c) If A=7Z, I = (12), compute R;. Generalize to any principal ideal ring.

Exercise 2.11. Let K be a field.
a) Show that the two polynomials X and Y in K[X,Y] are coprime.
b) Let I = (X,Y) be the ideal in K[X,Y] that they generate. Show that for

any polynomial P € I, one has P(0,0) = 0. Conclude that there is no U and V
in K[X,Y] such that UX + VY = 1.

c) Show that the map A — K, P — P(0,0) is a ring morphism, with kernel I.
Show that I is a maximal ideal in K[X,Y].
Exercise 2.12. One says that a ring A is a Noetherian ring if any ideal in A is
generated by a finite number of its elements.

a) If K is a field, show that K[X] is Noetherian.

b) If A is Noetherian and if I is an ideal in A, show that the quotient ring A/I is
Noetherian too.
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c) Show that a ring is Noetherian if and only if any increasing sequence of ideals
is ultimately constant.

Exercise 2.13 (Hilbert’s theorem). Let A be a Noetherian ring and let B =
A[X]. This exercise aims to prove that B is also a Noetherian ring. Let I be an
ideal in A[X].

For any integer n, let J, be the ideal in A generated by the leading coefficients
of polynomials P € I which have degree n.

a) Show that for any n, J, C Jn41. Deduce that there exists an integer N with
Jpn=Jn forn > N.

b) For any integer n, show that there exist polynomials P, 1,..., Pom, € I of
degree n whose leading coefficients generate J,,.

c) Show that the polynomials P, ; for n < N and 1 < j < mp generate I.
(Proceed by induction on the degree: if Ip denotes the ideal of B generated by these
polynomials, and if P € I has degree n, construct a polynomial P, € Iy such that
P — Py has degree < n —1.)

d) For any field K, show that K[X1,...,Xy,] is a Noetherian ring. Similarly, show
that Z[X1,..., X,] is a Noetherian ring.

Exercise 2.14. In a factorial ring, irreducible elements generate prime ideals.
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Galois theory

In this chapter we establish Galois correspondence. Discovered in 1832, it de-
scribes all subextensions of the spliting extension of a (separable) polynomial
in terms of a subgroup of the group of permutations of the roots of this poly-
nomial.

This chapter is really the heart of this book. Later we shall see numerous
applications. For example, Galois correspondence is the key to the problem of
solvability with radicals, and to the constructions with ruler and compass.

3.1 Homomorphisms of an extension in an algebraic
closure

In this section, we study the following situation: Let j: K — L be a finite
algebraic extension and let ¢: K' — {2 be an algebraic closure of K. Can we find
morphisms of extensions from L to {2, that is, field homomorphisms f: L — 2
such that f oj = i? In other words, is it possible to extend the morphism i
from K to L? Such an f is called a K -homomorphism from L to (2. We already
studied an instance of this problem in proving Theorem 2.1.5, when L is of
the form K[X]/(P) for an irreducible polynomial P.

Definition 3.1.1. One says an extension j: K — L is simple if there exists
x € L such that L = K|z].

Proposition 3.1.2 (Corollary of Theorem 2.1.5). Let j: K — L be a
simple extension and let * € L such that L = K|[z] with P its minimal poly-
nomial. Let i: K — (2 be an algebraic closure of K. There is a bijection
between the set of K-homomorphisms from L to {2 and the set of roots of P
in 2, given by the map f— f(x). In particular, there is at least one of these
morphisms, and at most [L : K].
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Remark 3.1.3. Each of these homomorphisms allows us to consider {2 as an
algebraic closure of L. But these morphisms are all different, and for this
reason it is better to study field extensions as (injective) morphisms rather
than subfields. However, once such a morphism is fixed, there is often no harm
in replacing L by its image in {2, which puts us in the possibly more reassuring
situation of subfields K C L C f2.

A polynomial P € K[X] is separable if its roots in an algebraic closure
of K are simple.

Lemma 3.1.4. Let K be a field. A polynomial P € K[X] is separable if and
only if P and P’ are coprime.

Proof. Let {2 be an algebraic closure of P. By definition, P is separable if and
only if P and P’ are coprime in £2[X]. By Corollary 2.4.3, this is equivalent
to the fact that P and P’ are coprime in K[X]. O

If K — L is an algebraic extension, we shall say an element o € L is
separable over K if its minimal polynomial is separable.

Lemma 3.1.5. Let K — L be an algebraic extension and let 2 be an algebraic
closure of L. If a € {2 is separable over K, it is also separable over L.

Note: under these conditions, « is algebraic over L and the extension K — L
is algebraic, so that « is algebraic over K (Theorem 1.3.16).

Proof. Let P be the minimal polynomial of o over L and let @ be its minimal
polynomial over K. Since Q(«) = 0, Q is multiple of P. Since « is assumed
to be separable over K, (Q has simple roots in {2, and therefore so does P. O

Theorem 3.1.6. Let K be a field, j: K — L a finite extension andi: K — {2
an algebraic closure. Then the number N of distinct K-homomorphisms from
L to 02 satisfies 1 < N < [L: K]. Moreover, the following three properties are
equivalent:

a) N =I[L:K]|;
b) there are elements x1,...,x, € L, separable over K, such that L =
Klzy,...,2,];

c) any element in L is separable over K.
We will say that an extension K — L satisfying these properties is separable.

Proof. Since L is a finite extension of K, there are elements z1,...,z, € L
such that L = KJz1,...,z,]. The proof now follows by induction on n. For
n = 1, L is a simple extension and, by Proposition 3.1.2, N is equal to the
number of distinct roots in {2 of the minimal polynomial of z;. Since this
polynomial has degree [L : K], one knows these two facts:
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— the integer N lies between 1 and [L : KJ;
— equality N = [L : K] holds if and only if z; is separable over K.

Assume that x7 € K; let P; be its minimal polynomial, d its degree and set
Ly = KJz1]. The restriction to L; of any K-morphism f: L — 2 is a K-
homomorphism f; from L; to {2, hence corresponds to the choice of a root
of Py in (2. Therefore, there are between 1 and d such homomorphisms f,
and each of them allows us to view (2 as an algebraic closure of L;. The
corresponding situation is summed up by the following diagram.

J

ey —

h :
+
n
The degree of the extension L; C L is equal to [L : K]|/d, hence is less
than [L : K]. By induction, for any homomorphism f;, the number of L;-
homomorphisms from L to {2 which extend it lies between 1 and [L : L4].
In this way, we have constructed distinct K-homomorphisms from L to 2,
in particular between 1 and [L : K] of them. Since any K-homomorphism
from L to {2 can be obtained via this procedure, this proves the first part of
the theorem.

The preceding proof also shows that the equality N = [L : K| holds if and
only if x; is separable over K, x5 is separable over K|[z1], etc. By Lemma 3.1.5,
this condition is satisfied when all of the x; are separable over K, hence
N = [L : K] in that case. Assume now that N = [L : K]. For any = € L,
the previous argument applied to the family (z,z1,...,z,) shows that z is
separable over K. This shows that L is separable over K. O

Definition 3.1.7. One says a field K is perfect if any irreducible polynomial
in K[X] has as many distinct roots in an algebraic closure as its degree.

By the very definition of a perfect field, Theorem 3.1.6 implies that the fol-
lowing properties are equivalent:

a) K is a perfect field;

b) any irreducible polynomial of K[X] is separable;

¢) any element of an algebraic closure of K is separable over K;

d) any algebraic extension of K is separable;

e) for any finite extension K — L, the number of K-homomorphisms
from L to an algebraically closed extension of K is equal to [L : K].

Corollary 3.1.8. Any algebraic extension of a perfect field is again a perfect
field.
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Proof. This is a reformulation of Lemma 3.1.5. Let K be a perfect field and
let K — L be a finite extension of K. An element which is algebraic over L is
algebraic over K. If it is separable over K, it is also separable over L by the
lemma. O

We conclude this section with a characterization of perfect fields that does
not involve extensions.

Proposition 3.1.9. The perfect fields are a) fields of characteristic zero; b)
fields of characteristic p > 0 whose Frobenius homomorphism is bijective.

In particular, finite fields are perfect : in that case, the Frobenius homomor-
phism, as any injective self-map of a finite set, is automatically bijective.

Proof. Let P be any monic irreducible polynomial in K[X]. Multiple roots
of P in an algebraic closure {2 are exactly the roots common to P and P’,
that is, the roots of their g.c.d. D. Since P is irreducible, this g.c.d. is either
equal to 1 or to P. If D =1, all roots are simple. If D = P, all are multiple
and in that case P divides P’. But, the degree of P’ being at most deg P — 1,
this implies P’ = 0.

In characteristic zero, this is of course impossible: if the leading monomial
of Pis aX", with n = deg P, the leading term of P’ is na X"~ !, and since
na # 0, deg P’ = n — 1. All fields of characteristic zero are thus perfect.

If however K has characteristic p > 0, the equality P’ = 0 means that
the degree of any nonzero term in P is divisible by p. Consequently, P =
an XP" 4+ ap_1 XP(=1 .. 4 gg is a polynomial in X?. Assume that the
Frobenius morphism of K is surjective. For any n, there exists b, € K such
that b2 = a,,. Then

P=bXPr 4P XPD f b = (b, X" 4+ Do),

which contradicts the irreducibility of P. Such a field is therefore perfect.
Conversely, if the Frobenius homomorphism of K is not surjective, choose a €
K which is not a pth power and let P = XP—a. In {2, a has a pth power, say b,
so that P = (X —b)? in 2[X] and P has a root with multiplicity p. However, P
is irreducible. Assume that P = QR for two nonconstant monic polynomials
Q and R € K[X]. It follows that @ = (X —b)™ and R = (X —b)?~™ in £2[X],
for some integer m with 1 < m < p. By expanding @, we find that mb € K
and since m # 0 in K, b € K, which contradicts the hypothesis that a is not
a pth power in K. This shows that such fields are not perfect, and concludes
the proof of the proposition. O
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3.2 Automorphism group of an extension

Definition 3.2.1. Let j: K — L be a field extension. A K-automorphism of
L is field automorphism o: L — L which is a morphism of extensions.

The set of all K-automorphisms of L is a group (under composition), denoted
Aut(L/K). Note an important particular case: if j: K — L is the inclusion of
a subfield K C L, a K-automorphism of L is a field automorphism o: L — L
which restricts to the identity on K.

Interest in this notion comes from the following obvious, but crucial, re-
mark. Let o be a K-automorphism of L and let P € K[X]. For any = € L,
one has o(P(z)) = P(o(z)). In particular, if x is a root of P, then so is o(z).
This means that o permutes the roots of P in L.

Ezamples 3.2.2.  a) Consider the extension R C C. Let o be a R-
automorphism of C. If z =a + b € C, with a, b € R,

o(z) =o(a+1ib) = o(a) + o(ib) = a + o (7)b.

Since
o(i)? = o(i%) = o(=1) = —1,

one has o(i) = +4, hence two automorphisms: the identity and complex con-
jugation.
b) Let w denote the real number /2 and let us consider the extension
Q C Q(w). Since any element in Q(w) can be written a + bw + cw?, for some
a,b,c € Q, a Q-automorphism o of Q(w) is well defined once the image of w
is given. But
ow)? =o(w®) =0(2) =2,

and the equation z® = 2 has only one real root, namely w, so w is its only
root in Q(w). Consequently, Aut(Q(w)/Q) = {id}.

¢) One has Aut(R/Q) = {id} (ezercise!).

d) Any C-automorphism of C(X) is given by P — P((aX +b)/(cX +d))
for some matrix (g 2) in GL(2,C), well defined up to multiplication by a
nonzero scalar. It follows that Aut(C(X)/C) = PGL(2, C). (See Exercise 3.4.)

Remark 3.2.3. Let K C L be a finite extension and let 0: L — L by any
K-homomorphism. Like any morphism of fields, o is injective. It follows that
o(L) is a K-vector space of dimension [L : K], hence [¢(L) : K] = [L : K].
Since o(L) C L, it follows that o(L) = L and o is surjective. Consequently, o
is a K-automorphism.

Proposition 3.2.4. Let j: K — L be a finite extension. The cardinality
of Aut(L/K) is at most [L : K]|. If the bound is attained, then the exten-
sion K — L is separable.
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Proof. Let i: L — {2 be some algebraic closure of L. Any K-automorphism
o € Aut(L/K) determines a K-homomorphism ioo: L — (2, and two distinct
K-automorphisms of L define distinct homomorphisms from L to {2. By The-
orem 3.1.6, the number of such homomorphisms is less or equal than [L : K]
and if it is equal, the extension is separable. O

Definition 3.2.5. One says a finite extension K — L is a Galois extension,
or is Galois, if Aut(L/K) has cardinality [L : K]. The group Aut(L/K) is
then called the Galois group of this extension, and is denoted Gal(L/K).

By Proposition 3.2.4, a Galois extension is necessarily separable.
Let us now state the main theorem of Galois theory.

Theorem 3.2.6 (Galois correspondence). Let K C L be a finite Galois
extension with Galois group G = Gal(L/K).

a) For any subgroup H C G, the set L = {z € L; VYo € H, o(x) =z} is
a subfield of L containing K. Moreover, [L* : K| is equal to the index (G : H)
of H in G.

b) For any field E with K C E C L, the extension E C L is Galois and
its Galois group is Gal(L/E) = {0 € Gal(L/K); Vz € E, o(z) = x}.

¢) The maps H — LY and E — Gal(L/E) are decreasing bijections be-
tween the set of subgroups in G and the set of subfields in L that contain K,
one bijection being the inverse of the other.

The proof of this theorem needs two other statements.

Proposition 3.2.7. Let K C L be a finite extension. The following conditions
are equivalent:

a) the extension K C L is Galois;

b) the extension K C L is separable and any K-homomorphism from L to
an algebraic closure of L has image L;

c) the extension K C L is separable and any irreducible polynomial
in K[X] having a root in L is already split in L;

d) there exists a separable polynomial P € K[X] of which the extension
K C L is a splitting extension.

Proof. Let i: L — {2 be an algebraic closure of L, fixed for the rest of the
proof.

Assume a). Any element ¢ € Gal(L/K) defines a K-homomorphism
from L to {2, namely i o 0. Since there are at most [L : K] of these mor-
phisms, they are all defined in this way, hence b).

Assume that the extension K C L is separable. Then, Theorem 3.1.6
asserts that there are [L : K] morphisms of extensions from L to 2. If b)
holds, their image is L, so that they define distinct K-automorphisms of L.
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It follows that Aut(L/K) has cardinality at least [L : K|, and the other
inequality being always true, the extension K C L is Galois.

Still assuming b), let P be an irreducible polynomial in K[X] which has
aroot win L. Let E = K[w] C L denote the subfield of L generated by this
root. For any root a € §2 of P, there is a unique K-homomorphism from FE
to 2 such that w — «. By Theorem 3.1.6 applied to the extension £ C L, such
a homomorphism then extends to a K-homomorphism o: L — {2 satisfying
o(w) = a. Since, by hypothesis, (L) = L, one has o € L and P is split in L.

Now assume that c¢) is satisfied and let x1, ..., 2, be elements of L such
that L = KJz1,...,2,]). The minimal polynomial P; € K[X] of x; is irre-
ducible and has a root in L. It follows that they are split in L and since the
extension K C L is separable, they have simple roots. Their least common
multiple l. c. m.(Py, ..., P,) is then split with simple roots in L, so that K C L
is a splitting extension of the separable polynomial P.

Assume finally that L is a splitting extension of a separable polynomial P
and let us show that the extension K C L is Galois. It is enough to show that
any K-homomorphism ¢ from L to {2 maps onto L. If x4, ..., x, are the roots
of P in L, their images o(z1),...,0(x,) are again roots of P, so belong to L.
As L =Klzy,...,2,], 0(L) C L. By Remark 3.2.3, 0 € Aut(L/K). O

Proposition 3.2.8 (Artin’s lemma). Let L be field and let G be a finite
group of automorphisms of L. Let K = LY the set of x € L such that for
every o € G o(x) = x. Then K is a subfield of L such that [L : K] = card G.
In particular, the extension K C L is Galois with group G.

Proof. Let uscheck quickly that K is a subfield
of L.If 0 € G, 0(0) = 0 and o(1) = 1, hence
0 and 1 belong to K. The relations o(x +y) =
o(2) + o(y) = o +y and o(zy) = o(2)o(y) =
zy, for z and y € K, and o € G, show that
x+y and xy belong to K. Finally, if x € K and
oc€G,o(—x)=—0(x) = —zand —x € K. If
moreover, © # 0, o(1/x) = o(1)/o(z) = 1/x
and 1/z € K. It follows that K is actually a
subfield of L.

If we assume that [L : K| > card G, we
can find n = 1 4 card G elements in L, say

AiCER -
ai,...,0an, which are linearly independent Emil Artin (1898-1962)
over K. Since n > cardG, the system of

card G linear equations with n unknowns and coefficients in L,

o(a;)z; =0, o€ @G,

n
=1

J
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has nonzero solutions (z1,...,z,) in L™. Take one of them with the smallest
possible number of nonzero coefficients. Up to reordering the a;’s, we may
assume that z1,...,z,, are nonzero, and that all other are 0. By linearity, we
may also assume x,, = 1, hence the relations

m—1

Z ola;)x; + o(am) =0, oed.

j=1
Let 7 € G and apply 7 to the preceding relation for 77! o o. One gets

m—1
o(a;)m(z;) + o(am) =0, o€,
j=1

hence, if we substract the relation for o,

m—1
o(a;)(7(z;) —x;) =0, o €@q.
j=1
By minimality of m, one necessarily has 7(x;) = x; for every i and every 7.
m
It follows that x; € K and and the relation ) ajz; = 0 is now a nontrivial
j=1
dependence relation over K, although the x; were assumed to be linearly
independent.

One thus has [L : K] < card G; in particular, the extension K C L is
finite. The elements of G can clearly be identified to K-automorphisms of L,
hence an inclusion G C Aut(L/K). By Proposition 3.2.4, this implies that
card G < [L : K], hence the equality card G = [L : K]. This shows that the
extension K C L is Galois and its Galois group, Gal(L/K) = Aut(L/K)
identifies with G. O

We now can prove Theorem 3.2.6 (Galois correspondence). Let K C L be
a finite Galois extension with Galois group G.
Let H be a subgroup of G. By Proposition 3.2.8, the extension LY C L is
Galois with Galois group H. It is obvious that X C L. Moreover,
[L: K] card G

(L7 K] = [L: LH] T cardH (G H).

Conversely, let E be a subfield of L, with K C FE. Since the exten-
sion K C L is Galois, we know from Proposition 3.2.7 that it is a split-
ting extension of some separable polynomial P € K[X]. Now, E C L is
also a splitting extension of this polynomial P, now viewed as a polynomial
in E[X]. By Proposition 3.2.7 again, the extension E C L is Galois. Since
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the F-automorphisms of L are precisely the K-automorphisms of L whose
restriction to F is the identity,

Gal(L/E)={oc € G;Vz € E, o(x) = z}.
Denoting by H this group, one has in particular card H = [L : E] and

cardG  [L: K]
card H [L: E]

(G:H)= =[E: K].
By the first part of Theorem 3.2.6, or directly by Proposition 3.2.8, the ex-
tension L C L is Galois with group H. Consequently, [L : L¥] = card H =
[L : EJ; since L contains E, these two fields are equal.

This shows that the maps H + L and E + Gal(L/E) are inverses of
one another.

The word “decreasing” just means the two obvious facts: a) if H C H’,
then L7 < LY and b) if E C E’, then Gal(L/E') is a subgroup of Gal(L/E).

Proposition 3.2.9. Let K C L be a Galois extension with group G =
Gal(L/K). Let H be a subgroup of G.

a) If o € Gal(L/K), one has o(L*) = L7Ho "

Let Ng(H) = {0 € Gal(L/K);cHo™! = H}, the normalizer of H
in Gal(L/K). Elements of Ng(H) are those o € Gal(L/K) mapping L
to itself.

b) Restricting an element of Ng(H) to L* defines a surjective group
morphism Ng(H) to Aut(L¥ /K) with kernel H. In particular, the esten-
sion K C LY is Galois if and only if H is a normal subgroup in G. Then
Gal(L" /K)=G/H.

Proof. a) An element z € L belongs to L if and only if h(x) = x for every
h € H. Therefore y belongs to o(L) if and only if ho~!(y) = o~ (y) for any
h € H, that is cho~1(y) = y for any h € H, that is y € LoH "

b) Since the extension K C L is Galois, any K-homomorphism L7 —
L is the restriction to L¥ of some K-homomorphism L — L, that is, of
an element 0 € Gal(L/K). Such a o satisfies o(L) = L¥ if and only if
oHo~!' = H, hence a surjective group morphism Ng(H) — Aut(L/K),
o +— o|pu. The kernel of this morphism is the set of all 0 € Ng(H) such that
o(x) = x for any x € L¥  so is equal to H. It follows that card Aut(L¥ /K) =
card Ng(H)/card H = (Ng(H) : H). (We may also take the quotient and
obtain an isomorphism Ng(H)/H ~ Aut(L? /K).)

Recall that [L7 : K] = (G : H). It follows that card Aut(L?/K) =
[L* : K] if and only if Ng(H) = G, which means precisely that H is a
normal subgroup of G (see Definition 4.4.1). Consequently, K C L¥ is a
Galois extension if and only if H is normal in G. O
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Galois theory implies useful and important
results, even for non-Galois extensions. This is
due to the fact, which we prove now as a corol-
lary of Prop. 3.2.7, that any finite separable
extension can be embedded in a Galois exten-
sion.

Proposition 3.2.10. Let K be a field, fix an
algebraic closure 2 of K and let L be a finite
separable extension of K contained in §2. In

) 8

this situation, there is a smallest finite exten- '.;Q:_ il %‘ _
sion L C L® contained in (2 such that the ex- L Ve
tension K C L& is Galois. Evariste Galois (1811-1832)

Proof. There are elements x1,...,2, in L such that L = K[z, ...,2,]. They
are separable over K, hence for any ¢, the minimal polynomial P; of x; is
separable. Define L# as the subfield of {2 generated by the roots of the P; in 2.
This is a splitting extension of the separable polynomial l.c.m.(Py,..., P,),
hence it is a Galois extension. Moreover, for any finite extension F of L such
that the extension K C L is Galois, the polynomials P; are split in E (see
Prop. 3.2.7, ¢)), so that L8 C E. The proposition is thus proved. O

Under the hypotheses of the proposition, any subfield E of L& containing K
corresponds to a subgroup of Gal(L#/K), namely Gal(L8/E), and the field L
corresponds to the subgroup Gal(L&/L). Consequently, the set of subfields F
with K C E C L is in bijection with the set of subgroups of Gal(L#/K) which
contain Gal(L8/L). Since a finite group has only finitely many subgroups, one
deduces the following corollary.

Corollary 3.2.11. Let K C L be a finite separable extension. Then, there are
only finitely many fields E with K C E C L.

This result might look surprising and may even be false if the extension K C L
is not assumed to be separable; see Exercise 3.10.

3.3 The Galois group as a permutation group

In the previous section, we concentrated on fixed, “abstract” Galois exten-
sions. In particuler, we proved that they are splitting extensions of some
polynomial. But concrete problems of field theory are more likely to require
another point of view: given a polynomial (irreducible, for example), what
can be said of the field generated by its roots in some algebraically closed
extension?



3.3 The Galois group as a permutation group 65

The following lemma is obvious, but one always has to keep it in mind. It
claims that if K C L is the splitting extension of a separable polynomial P €
K[X], then Gal(L/K) permutes the roots of P and an element in Gal(L/K)
is determined by its action on these roots.

Lemma 3.3.1. Let K be a field, P € K[X] a separable polynomial and K C L
a splitting extension of P. Let # C L denote the set of roots of P in L.

For any K -automorphism o € Gal(L/K) and any root x € Z, o(x) € %.
The restriction of o to Z induces a permutation of Z and the resulting map
Gal(L/K) — 6(Z) is an injective morphism of groups.

(We denote by &G(Z) the group of permutations of the set fR.)

Proof. If o belongs to Gal(L/K) and « € L, one has o(P(x)) = P(c(z)). In
particular, if P(x) = 0, P(o(z)) = 0, which means o(x) € Z. Since # is stable
under o € Gal(L/K), the restriction of o to £ is an injective map # — Z.
But Z is finite, so o] has to be bijective, hence is a permutation of Z. It
is then clear that the map ¢ — 0|z is a group morphism from Gal(L/K)
to 6(Z).

Let o € Gal(L/K) such that for any z € %, o(x) = x. We need to prove
that o is the identity. The set L7 consisting of all a € L such that o(a) = a is
a subextension of L. Since it contains the roots of P and since, by assumption,
L is generated by these roots, L° = L, which means o(a) = a for any a € L.
This shows that ¢ =id, q.e.d. (]

Recall that one says a group G acting on a set X acts transitively if for
any x and y € X, there is g € G such that g-z = y.

Proposition 3.3.2. Let K be a field, P € K[X] a separable polynomial and
let K C L be a splitting extension of P. The action of Gal(L/K) on the roots
of P is transitive if and only if the polynomial P is irreducible in K[X].

Proof. Denote by & the set of roots of P in L. If P is not irreducible, there are
two nonconstant polynomials @ and R € K[X] such that P = QR. Since P is
separable, @ and R are coprime. It follows that the set % can be split into the
union of the roots #; of QQ and %> of R. The sets #; and %5 are disjoint and
nonempty. For z € #; and 0 € Gal(L/K), Q(o(x)) = 0(Q(z)) = 0(0) =0, so
o(z) € #;. In particular, o(x) &€ %>. For x1 € %, and x5 € Ho, this implies
that there is no o € Gal(L/K) such that o(x1) = xs.

Assume conversely that P is irreducible and let z, y be two roots of P. The
subextensions K C K[z] and K C KJy] are both simple and generated by a
root of P, so there is by Theorem 2.1.5 a unique K-morphism f: K[z] — K][y]
such that f(z) = y. Since K[z] and KJy] have the same degree over K, f is
an isomorphism. The field L is then a splitting extension of the polynomial P
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over the two isomorphic subfields K[z] and K[y]. By Theorem 2.2.2, one
can extend f to a K-automorphism o: L — L. We just found an element o
in Gal(L/K) with o(x) = y. O

As illustrated by the proof of Proposition 3.3.2, the explicit determination
of elements in a Galois group is not very easy, since one has to work step
by step. Each of these steps is, however, relatively manageable because it
concerns only simple extensions. The next theorem states that, in fact, any
finite separable extension is a simple extension.

Theorem 3.3.3 (Primitive Element Theorem). Let K be a field and let
K C L be a finite separable extension. There exists x € L such that L = K|x].

Such an element x is usually called a primitive element.

Proof. One has to split the proof into two cases, according to the field K being
finite or infinite.

Assume first that K is finite. Then the field L is finite, too, and its mul-
tiplicative group, L*, is cyclic (Exercise 1.16). If x is a generator of L*, one
clearly has L = K|x].

Assume now that K is infinite. By Corollary 3.2.11, there are only finitely
many fields £ with K C E C L. In particular, there are only finitely many
simple extensions of K contained in L, say F1,..., FE,.

Any element of L belongs to some F;; indeed, any element x belongs to the
simple extension K|[z], which, by assumption, is one of the F;. This means
that the K-vector space L is the union of finitely many vector subspaces.
By the following lemma, there is some 7 with E; = L, so that L is a simple
extension of K. O

Lemma 3.3.4. Let K be an infinite field, let V be a K-vector space and let
Vi, ..., Vi be any finite family of vector subspaces in V' such that V; £V for
all i. Then LnJ Vi#V.
i=1

Proof. The result is obvious when n = 1. Let us prove it by induction on n.
One may assume Vi3 U---UV,,_1 # V and henceforth find x € V such that
ifi<n—-1,x2¢&V,. If z &V,, we are done. If not, since V,, # V, there is
y € V with y € V,,. We will prove that there is t € K such that x + ty does
not belong to any V;.

If t # ¢’ are such that both vectors x +ty and z+t'y belong to V;, then the
difference (t —t')y € V;, so y € V; and consequently x = (z + ty) — ty € V;. If
i < n, this contradicts the choice of z, and if i = n, this contradicts the choice
of y. Therefore, for any 4, there is at most one value of ¢ for which = +ty € V;.

Hence there are at most n values of ¢ € K for which x + ty belongs to

n

some V;. Since K is infinite, one may choose t € K such that z+ty ¢ |J V;.0
i=1

1=
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The method I chose for presenting Galois theory centers on the concept of
morphism of extensions, and the crucial result was Artin’s lemma (Proposi-
tion 3.2.8).

There is another approach which consists in first proving the Primitive
Element Theorem (Theorem 3.3.3) without the use of Galois theory. The
point is now that the Galois group of a simple extension is very easy to grasp:
if L = KJz], with 2 a root of an irreducible polynomial P € K[X] which is
split in L, any K-automorphism of L is determined by the image of x and
this image is one of the roots of P in L.

To make a connection between these two approaches to Galois theory, I
will give you a direct proof of Theorem 3.3.3.

Another proof of the Primitive Element Theorem. The case of extensions of
finite fields is treated as before, so we assume that the field K is infinite. By
induction, it suffices to show that an extension which is generated by two
elements is already generated by a single one. So let K be an infinite field,
L a finite separable extension of K and z, y two elements in L such that
L = K[xz,y]. Let P and @ be the minimal polynomials of z and y over K.
Let 2 be an algebraic closure of L and let us denote by z = x1,...,x,
(resp. ¥ = y1,...,Ym) the distinct roots of P (resp. Q) in 2. Since the set
of all (z; —x1)/(y; —w1), for 1 < i < nmand 1 < j < m, is finite, and
since K is infinite, we may find ¢ € K such that for every (i,7) # (1,1),
i + cyj # x1 + cyr.

Set z = & 4+ cy and let us show that L = K|[z]. The polynomial R(X) =
P(z — ¢X) has coefficients in the field K[z] and vanishes at y. On the other
hand, if j # 1, z — cy; = x1 + cy1 — cy; is not a root of P, by the very choice
of ¢, so R(y;) # 0. It follows that y is the only root shared by @ and R.
Since @ has simple roots, one has g.c.d.(Q,R) = X — y. Now, @ and R
both have coefficients in K[z], hence so does their greatest common divisor
(Proposition 2.4.3), and y € K[z]. Finally x = z — cy € K[z], from which we
conclude that L = K[z]. 0

Thanks to this proof, most inductions become useless, at least if we stick

to the study of separable extensions. Artin’s lemma also may be given another
proof.

Another proof of Proposition 3.2.8. It begins similarly. For x € L, let us
introduce its orbit under the action of G, that is, the set 0, of o(x) for o € G.
The polynomial

YED,,
satisfies o(P,) = Py, for any o € G, because any G-orbit is stable under o.
Therefore, the coefficients of P, are elements of the field K = L¢. Since it
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has simple roots and since P,(x) = 0, z is separable over K. It follows that
the extension K C L is separable. Moreover, the degree of any element of L
over K is at most card G.

Let us show that the extension K C L is finite. Otherwise, there would
exist an infinite increasing chain of finite subextensions, K C Ly C Ly C --- C
L, with [L, : K] — oo when n — oo. By the Primitive Element Theorem,
any extension K C L,, being finite and separable, is a simple extension,
hence [L,, : K] < card G. This contradiction shows that K — L is a finite
extension. By the Primitive Element Theorem again, it is a simple extension,
hence [L : K] < card G. Since by Proposition 3.2.4, one has card G < [L : K],
the desired equality follows. O

3.4 Discriminant; resolvent polynomials

We shall begin this section by characterizing polynomials P € K|[X] whose
Galois group is contained in the alternating group. (By abuse of language,
the Galois group of a separable polynomial is defined as the Galois group
of some splitting extension.) This fits perfectly in the framework of Galois
theory. Let L denote a splitting extension of a separable polynomial P €
K[X]. Choose an ordering z1,...,x, of the roots of P in L. The action of
Gal(L/K) on {z1,...,x,} can now be transferred to an action of Gal(L/K)
on {1,...,n}, defined by

U(,’Ei)zxg(i)7 1<e<n.

Now, any subgroup H C &,, defines a subgroup H N Gal(L/K) of Gal(L/K)
which corresponds to some subextension K ¢ L#NGal(L/K) « I, One can ask
in particular whether Gal(L/K) C H or not.

But had we chosen another ordering vy, ...,¥y, of the roots, there would
exist some permutation 7 € &, such that y; = x,(;). The relations

a(yi) = a(xr(i)) = Tor(i) = Yr—1o7(3)

show that the subgroup G of &,, defined by Gal(L/K) would be replaced
by the conjugate subgroup 7~ !G7. The preceding question must therefore be
replaced by the following one: Is Gal(L/K) contained in a conjugate of H or
not?

This problem does not appear for the alternating group 2,, C &,,, since it
is a normal subgroup. In other words, the property that Gal(L/K) is contained
in 2A,, does not depend on the ordering of the roots.

Recall that we had defined in Section 1.5 the discriminant as the symmetric
polynomial in n variables
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D(Xy,...,X,) = [[(Xi — X;)%.

i<j

By Theorem 1.5.3 on symmetric polynomials, there exists a unique polynomial
A€ Z[S,...,Sy] such that

D(Xy,...,X,) = A(S1,...,5).
We now define the discriminant of a polynomial of degree n,
P=a,X"+an 1 X" '+ +ap, a,#0,
by the formula
disc(P) = a*" 2 A(—an_1/an, Gn_2/an, ..., (=1)"ao/ay).

(The coefficient a2"~? is there only for homogeneity, to insure, e.g. , that the

discriminant of a polynomial with integer coefficients is again an integer; see
Exercise 3.26.) If z1,...,z, are roots of P in an algebraic closure of K, one
thus has

disc(P) = a2 2D(z1, ..., 2n).

In particular, disc(P) # 0 if and only if P is separable.

Examples 3.4.1. a) The roots x and y of P = aX?+bX +c satisfy x +y =
—b/a and zy = c¢/a, so that

disc(P) = a*(z —y)? = a®*(z* + y* — 22y) = a*((x + y)? — 4ay) = b* — 4ac.
b) With notations as above, one has
n
disc(P) = (—1)™(n=1/2qn=2 H P'(z;).
j=1

If we denote by y1,...,%,_1 the roots of P’, it follows that

n—1
P'(z;) = nay, H(xj — Yk)s
k=1
and )
disc(P) = (1)1 T] T e~ w)
k=1j=1
Therefore,



70 3 Galois theory

c¢) Look at the degree 3 polynomial defined by P = X3 +pX +¢, assuming
that the characteristic of K is not equal to 3. One has P’ = 3X? + p and its

roots are ++/—p/3; hence
disc(P) = —27P(=+/=p/3)P(\/=p/3)
=27 (—JT/SS? + q) (JT/S? + q)
= —27¢> — 4p°.

If P is a monic separable degree n polynomial, with roots {z1,...,2,} in
some splitting extension L of K, set

d= 1_[(3:Z

i<j

This is a square root in L of the discriminant of P. Moreover, for any o €
Gal(L/K),

o(d) = [[(e(z:) = o(z)) = [[@oriy = 2a(z)):

i<y i<j
where o(i) is the unique integer in {1,...,n} such that o(x;) = 2,(;). Conse-
quently,
1 ifo(i) <a(y);
d)/d = II{ - .
i -1 ife(i (1) > o (j).

In other words, if i(o) denotes the number of inversions of the permutation o
acting on {1,...,n}, then

o(d)/d = (-1)"

is equal to the signature of o, viewed as an element of K. It follows that d € K
if and only if the signature of any element in Gal(L/K) is equal to 1 in K,
hence if and only if
— either the field K has characteristic 2 (in which case —1 =1 in K1), or
— Gal(L/K) is a subgroup of the alternating group 2,,.

This proves the following proposition, a concrete statement in Galois theory.

Proposition 3.4.2. Let K be a field whose characteristic is different from 2.
The Galois group of a monic separable polynomial P of degree n is contained
in the alternating group A, of the roots if and only if the discriminant of P
is a square in K.
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Let P be a separable monic polynomial with coefficients in a field K, and
let K C L be a splitting extension of P. Let us denote by z1,...,x, the
roots of P in L. For any polynomial f in K[Xi,...,X,], let us consider the
quantity f(x1,...,2,) € L. By Theorem 1.5.3, any symmetric polynomial
with coefficients in K is a polynomial with coefficients in K in the elementary
symmetric polynomials S, ...,S,. As the S;(z1,...,x,) are, up to sign, co-
efficients of the polynomial P, it follows that, for any symmetric polynomial
feK[Xy,...,X,], f(z1,...,2,) belongs to K.

More generally, assuming that f(X,1),..., Xom)) = f(X1,...,X,) for
every permutation o in a subgroup G of &,,, it will follow that f(x1,...,z,) €
K, as soon as Gal(L/K) C G. This motivates the following considerations.

Let G be any subgroup of &,,. Let f be a polynomial in Z[Xy,...,X,]
and let H be the subgroup of G consisting of all o € G such that

f(Xa(l)a v 7X<7(7L)) - f(le e 7Xn)

In fact, the formula 7 f = f(Xq(1), ..., Xo(n)) defines an action [o]: f + 7 f
of the symmetric group &,, on the polynomial ring K[Xy,...,X,]. Observe
that any [o] is both an automorphism of rings and of K-vector spaces. If
we restrict this action to the subgroup G, then the group H is precisely the
stabilizer of the polynomial f. Therefore, for ¢ € G and 7 € H, 77 f =
9("f) = °f and ? f only depends on the right coset cH of o in G/H. As a
consequence, f(Ty(1),...,Te(n)) still depends only on this coset oH, which
allows the following definition to make sense.

Definition 3.4.3. The resolvent polynomial Rg(f, P) of P with respect to f
and G is defined by

Ro(f,.P)= [ (X—=f@eq) - Tow):

ocHeG/H

(The product is on an arbitrary family of elements in G representing cosets

in G/H.)
Lemma 3.4.4. If Gal(L/K) is a subgroup of G, Ra(f, P) € K[X].

Proof. By definition, Rg(f, P) is a polynomial in L[X]. To prove that it
belongs to K[X], one has to check that for any element 7 € Gal(L/K),
T(Ra(f, P)) = Ra(f, P). (The action of Gal(L/K) on polynomials is defined
coefficient-wise; a polynomial is stable under Gal(L/K) if and only if each of
its coefficients is.) But, by the very definition of the map Gal(L/K) — &,,
one has 7(x;) = x.(;) for every j, so that

T(f(xa(l)a ce 7x0'(n))) = f(xfro'(l)a cee ax‘ra(n))
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and it follows that

T<RG(f7 P)) = T( H (X - f(mo(l)a“wxo(n))))

ceG/H

= H (X_f(xTo'(l)ﬂ"'7xTU(n)))'

ceG/H

Since we assumed that Gal(L/K) C G, when [o] runs along the set of right
cosets in G modulo H so does [ro], hence 7(Ra(f, P)) = Ra(f, P), q.e.d. O

The discriminant appears to be a particular case of this general setup of re-

solvent polynomials. In fact, the stabilizer of the polynomial f = [] (X; —Xj)
i<j

in G = 6, is equal to the alternating group H = 2,,. One has f(xl,]. cy ) =
d, while if ¢ is any odd permutation, f(zg(1),...,%¢(n)) = —d. Consequently,
Re, (f,P) = (X —d)(X +d) = X? — d*> = X? — disc(P) and the criterion
of Prop. 3.4.2 can be rewritten as follows: the Galois group of P is contained
in 2, if and only if the resolvent polynomial Rg, (f, P) has a simple root
in K. (Observe that the polynomial X2 — a is split separable if and only if a
is a nonzero square and the characteristic of the field is not equal to 2.)

For a more general resolvent polynomial, one can prove the following
proposition.

Proposition 3.4.5. Keeping the previous notation, assume that Gal(L/K) C
G, and assume moreover that the resolvent polynomial Rg(f, P) € K[X] has
a simple root in K. Then, Gal(L/K) is conjugate in G to a subgroup of H.
In other words, there is g € G such that Gal(L/K) C gHg™'.

Proof. For any o € G, set as = f(T5(1),.-.,To(n)). It Was established in the
proof of Lemma 3.4.4 that for any 7 € Gal(L/K), one has 7(ay) = aro. Let
0 € G be any element such that the simple root whose existence is claimed
by the statement is o, (the right coset o H of the element o is well defined,
although o is not). That a, belongs to K means that for any 7 € Gal(L/K),
one has a,, = 7(ay) = a,. Since «, is a simple root of Rg(f, P), if follows
that for any 7 € Gal(L/K), 7o is in the same right coset modulo H as o.
This means that 7o € o H, that is, 7 € ¢ Ho !, which is exactly what we had
to prove. O

A generalization of this proposition, together with an adequate list of
(G, f) is actually used by computer programs to determine explicitly Galois
groups of polynomials with integer coefficients, at least when their degree is
not too big. (Present knowledge and computer capacities go to degree 23,
in MAGMA’s implementation.)
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3.5 Finite fields

A finite field is a field with finitely many elements. An interesting aspect of
finite fields is that they illustrate in a rather clear and simple manner Galois
theory, in addition to being an incredibly rich topic in arithmetic. They were
discovered by Gauss but he did not publish anything on this subject, and
Galois rediscovered them later.

Let us begin with some easy remarks. Let F' be a finite field, and let ¢
denote its cardinality. The canonical morphism Z — F' cannot be injective,
so that the characteristic of F' is a prime number p. In particular, F' contains
the field F, = Z/pZ, and is naturally a F,-vector space, whose dimension is
necessarily finite. If d denotes this dimension, it follows that card F' = p?.

The set F'* of nonzero elements in F' is a group under multiplication, with
cardinality ¢ — 1. By Lagrange’s theorem (Proposition 4.2.2), any element
x € F* satisfies 297! = 1. Equivalently, 9 = x for any x € F. Like any finite
subgroup of the multiplicative group of a field, F** is cyclic (see Exercise 1.16)
and there exists an element x; € F* whose order is ¢ — 1.

If F — {2 is an embedding of F' in an algebraic closure of F),, the elements
of F map to roots of the equation z¢ = x. Conversely, the set of elements x € (2
satisfying ¢ = x is a finite set, and its cardinality is exactly ¢, because the
polynomial X9 — X, having derivative —1, is separable. Moreover, F' is a
subfield of §2. If ¢ is the Frobenius homomorphlsm of 2, glven by p(z) = P,
F is the subfield fixed by the automorphism ¢?: x — P,

This description also shows that two finite fields with the same cardinal-
ity ¢ are isomorphic: they are both isomorphic to the subfield of {2 consisting
of all x with 29 = z.

In brief:

Proposition 3.5.1. Let p be a prime number, and let ¢ = p® be a power of p.
The roots of the polynomial X1 — X in an algebraic closure of ¥}, form a finite
field with q elements. It is isomorphic to any field with q elements.

Let us now look at extensions of finite fields. Let £ — F be such an
extension. Necessarily, the fields ¥ and F' have the same characteristic p and
there are integers e and f such that card E = p® and card F = p/. Since F is a
finite-dimensional E-vector space, the cardinality of F' is a power of that of F.
This shows that e divides f. Moreover d = f/e is the degree of the extension
E — F. Conversely, let E and F' be two finite fields with cardinalities p® and
pl, where f = de. If £2 is an algebraic closure of F,, E and F' can be identified
with the subfields of {2 consisting of elements z with zP° = z and a?’ = x,
respectively. This allows us to identify E with a subfield of F', hence there is
some morphism F — F.
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Without loss of generality, we now assume that £ C F. Let ® = ¢°: F —
F denote the morphism of fields given by z ~— xP". It restricts to the identity
on E, and so defines an element of Aut(F/E). If z; € F* has order p/ — 1,
one has ¢/ (z) = 2#” | hence & (x) # a for 1 < ej < f. This shows that the
d elements id, @, ..., ®% ! in Aut(F/E) are distinct, hence card Aut(F/E) >
d. Consequently, the extension E — F' is Galois, and its Galois group is
generated by @, whence is isomorphic to Z/dZ.

We have just proved:

Proposition 3.5.2. FExtensions of finite fields are Galois, and their corre-
sponding Galois groups are cyclic.

This fact has an important and concrete application to the action of the
Galois group on the roots of a polynomial with coefficients in a finite field. To
simplify, let us consider a separable monic polynomial P € F,[X] and let F' be
a splitting extension of P. Let ¢: z — xP be the Frobenius homomorphism,
which is a generator of the Galois group Gal(F/F,). If = is a root of P, so
is ¢(x). We can order the roots {z1,x2,...,2,} of P so that the permuta-
tion that ¢ induces on them has the decomposition into cycles with disjoint
supports

(@1, oy Ty ) (Trg 1o s By tnn )« (Tngdeodmy g1y - o s L)

(There are a r cycles, with lengths nq,...,n,, and n; + -+ 4+ n, = n.) Since
Gal(F/F,) is generated by ¢, the roots of P in a given cycle are exactly the
conjugates of any of them, hence a factorization of the polynomial P into
irreducible factors, with degrees n,...,n,.

On the other hand, the degrees of the irreducible factors of the poly-
nomial P allow one to determine the length of the cycles of the Frobenius
morphism acting on the roots of P.

As last remark, to compute the n;, one does not really need to factor the
polynomial P, for it is sufficient to determine the number v of irreducible
factors with given degree d. By definition, v; is the number of roots (distinct
since P is separable) of P in F,; these are the common roots of P and X? - X,
so that vy is the degree of the polynomial g.c.d.(P, X? — X). Then, if F .
denotes an extension of F,, with cardinality p?, 11+ 2 is equal to the number
of roots of P in the field F,>. This implies that 2v; is the degree of the g.c.d.
of the polynomials P and (Xp2 — X)/(XP — X), which is also equal to the
g.cd. of P/g.c.d.(P,X? — X) and X?" — X. More generally, the number of
roots of P in the field Fy» is equal to

Zdud = deggcd(X”n - X, P).
d|n

This allows us to compute vy by induction.



Exercises 75
Exercises

Exercise 3.1 (Extending algebraic identities). Let K be an infinite field.

a) If P € K[X1,...,Xy] is a nonzero polynomial, show that there is (z1,...,z,) €
K" with P(z1,...,z,) # 0.

b) Prove that the polynomial ring K[X1,...,X,] is an integral domain. Deduce
from this another proof for Lemma 3.3.4.

c) Let P and @ be two polynomials in K[X1,...,X,]. Assume that @ # 0 and
that for any (z1,...,2,) € K" with Q(z1,...,2,) # 0, one has P(z1,...,z,) = 0.
Show that P = 0.

Exercise 3.2. Let K be a field.
a) Show that a polynomial P € K[X] is separable if and only if it is a product of
distinct irreducible separable polynomials.

b) Let Pi,..., P- be separable polynomials in K[X]. Show that their l.c.m. and
their g.c.d. are separable polynomials.

Exercise 3.3. Let K be the field generated by i and v/2 in C (i? = —1).

a) Show that [K : Q] = 4. Write down a primitive element for K and compute its
minimal polynomial.

b) Determine all possible actions of Gal(K/Q) on the set {#i, ++/2}. Deduce that
Gal(K/Q) ~ (Z/27Z)>.

c) Determine all subfields of K.

Exercise 3.4. Let k be a field and let K denote the field k(X)) of rational functions
with coefficients in k.

a) Let R € K be any nonconstant rational function, and let L denote the subfield
k(R) of K generated by R over k. Write R = A/B as the quotient of two coprime
polynomials. Show that the polynomial P(X,Y) = A(X) — B(X)Y is irreducible
in k[X,Y].

b) (continued) Conclude that X is algebraic over L, with degree
max(deg A, deg B).

c) Let f be any k-automorphism of k(X). Show that there is a matrix (2 9%) in
GL(2, k) such that f(X) = (aX +b)/(cX + d).

d) Show that Aut(k(X)/k) is isomorphic the group PGL(2, k) = GL(2, k)/k".

Exercise 3.5. Let K C L be a Galois extension with Galois group G. Let H be a
subgroup of G and let E = L7 be the extension of K fixed by H. Show that the
Galois closure E® of FE is contained in L and determine the subgroup of G to which
it corresponds by Galois theory.

Exercise 3.6. Let K be a field and let L be a finite Galois extension of K. Let z € L
and let y be a conjugate of x, that is, a root of the minimal polynomial of x over K.

Show that there exists 0 € Gal(L/K) with o(z) = y. How many such o are
there?
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Exercise 3.7. Let K be a field and let K C L be a Galois extension which is
a splitting extension of some irreducible polynomial P € K[X]. Let n = deg P
and denote by z1,...,2, its roots in L. This allows us to consider Gal(L/K) as a
subgroup of &,,.

a) Fori € {1,...,n}, let H; be the subgroup of &,, of permutations o with o (i) = 7.
Set G; = Gal(L/K) N H;. Show that the G; are conjugate in Gal(L/K) and that for
any i, (Gal(L/K) : G;) = n. To which subextensions do these subgroups correspond?

b) If Gal(L/K) is abelian, show that L = KJz1].

Exercise 3.8. Let K C L be a finite Galois extension. Let x € L and assume that
the elements o(x) for o € Gal(L/K) are all distinct. Show that L = K(z).

Exercise 3.9. Let K — L be a simple extension, and fix o € L such that L = KJa].
For any field E, with K C E C L, let Pg denote the minimal polynomial of « over E.
a) Show that [L : E] = deg Pg.
b) If E, E' are two fields such that K C E' C E C L, show that Pg divides Pg:.

c) Let E be a field with K C E C L, and let E’ be the subfield of E generated by
the coefficients of Pr. Show that Pg = Pg. Conclude that E' = E.

d) Show that there are only finitely many fields E with K C E C L.

Exercise 3.10. a) Let K — L be an algebraic separable extension. Let n be
an integer such that any element in L has degree at most n over K. Show that
[L: K] < n. (Otherwise, there would be a finite extension L1 C L with [L1 : K] > n.
Apply the Primitive Element Theorem.)

b) Let p be a prime number. Set K = F,(X,Y) and let L be the extension of K
generated by the pth roots of X and Y in an algebraic closure of K. Show that
[L : K] = p® but that any element in L has degree at most p over K. In particular,
the extension K C L cannot be simple.

Exercise 3.11. Let k be a field, L = k(X1,...,X,) the field of rational functions
in n variables and let K be the subfield of L generated by k and the elementary
symmetric polynomials Si,...,S,.

a) Show that the extension K C L is Galois with group &,,.

b) If k has characteristic zero, show that X1 +2Xs+---+nX,, generates L over K.

c) Let f € L, denote by H its stabilizer in &,, i.e. , the set of all ¢ € &,, such
that

f(Xla s 7X’ﬂ) = f(XU(l)a cee aXU(n))'

Show that the extension K(f) C L is Galois with group H. (Prove that f is a
primitive element of the extension K C L7.)

d) Deduce from the previous question that any rational function g € L with the
same stabilizer as f can be expressed as a rational function in f and the elementary
symmetric polynomials (Lagrange, 1770, 60 years before Galois!).

Ezxplicit example with n = 3: f = X1 X2 + X3, g = X3.
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Exercise 3.12. a) Let G be a group and let F be a field. Let o1,...,0, be n
distinct group morphisms from G to the multiplicative group F'*. Show that o1, ...,
o, are linearly independent: if a1, ..., a, are elements in F' with a101+- -+ anon =
0, then a1 = -+ = an = 0. (Argue by contradiction, considering a nontrivial relation
with the least possible number of nonzero coefficients.)

b) Let E and F be two fields and let o1, ..., 0, be n distinct field morphisms
E — F. Deduce from the first question that they are linearly independent over F'.

Exercise 3.13. Let K — (2 be an algebraic extension of a perfect field K and
assume that any nonconstant polynomial in K[X] has a root in (2.

a) Let K — L be a splitting extension of an irreducible polynomial P € K[X].
Show that there is a € L such that L = K(«).

b) Let @ denote the minimal polynomial of « over K. Using the fact that @ has

a root in (2, show that there is a morphism of extensions L — (2.

c) Conclude that P is split in {2, hence that {2 is an algebraic closure of K.

Exercise 3.14. Let K = Q(¢) be the extension of Q generated by a primitive nth
root of unity ¢ in C.

a) Show that the set of mth roots of unity in K is a cyclic group of order n,
generated by (.

b) Show that the extension Q — K is Galois.

c) Let o be an element of Gal(K/Q). Show that there exists an integer d prime
to n such that o(¢) = ¢%.

d) Construct an injective group morphism ¢: Gal(K/Q) — (Z/nZ)".

e) Using Exercise 2.5, prove that ¢ is an isomorphism of groups.

Exercise 3.15. Let p be an odd prime number. Recall that (Z/pZ)" is a cyclic
group with p — 1 elements.

n—1

a) Show that for any integer n > 1, (Z/p"Z)" is a cyclic group of order (p—1)p
(If @ € Z is an element of the class modulo p which generates (Z/pZ)*, consider
" (1+p).)

b) Conclude that for any positive integer n, the cyclotomic field Q({p~) generated
by a primitive p"th root of unity has a unique subfield K with [K : Q] = 2.

c) Justify the existence of a group morphism e: (Z/pZ)* — {£1} such that any
generator of (Z/pZ)* maps to —1. One then defines

G =) e(k)exp(2ikr/p)

1

B
Il

(Gauss’s sum). Show that G* = (—1)®~Y/2p  Can you now identify the subfield
asserted by the previous question?
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Exercise 3.16. Let F' = F, be a finite field with ¢ elements. If d > 1, let .,
denote the set of irreducible monic irreducible polynomials of degree d in F[X]; let
Ng = card .%,.

a) Show that for any positive integer d, Nq # 0.

b) For any positive integer n, show that n is a multiple of the degree of any
irreducible polynomial dividing X " _ X, Conversely, if d divides n, show that any
polynomial in .#; divides X _x,

c) Show that
d|n

d) Show that for any positive integer n,

1 -2
No>—q"1=2.
n qg—1

e) Let u: N* — {0,1,—1} denote Mobius function, defined by u(n) = (—1)" if
n is the product of r distinct prime numbers, and p(n) = 0 otherwise. For any
two functions f, g: N* — C, show that f(n) = Y g(d) for all n, if and only if

d|n

g(n) = > pu(n/d)f(d) for all n (Mobius’s inversion formula). In particular,
d|n

1 d
N, = = .
- > p(n/d)g
d|n
Exercise 3.17. This exercise focuses on the factorization of cyclotomic polynomials
over a finite field F; with cardinality ¢ and characteristic p. Let 2 be an algebraic
closure of Fy.

a) For any positive integer n which is prime to p, and any nonnegative integer r,
show that @,r, = ®2 ~1 in the ring F,[X].

b) Let a € 2*. Show that there exists a least positive integer n such that o™ = 1.
Show that it is prime to p. Show that the degree of a over Fy is equal to the order
of g in the group (Z/nZ)*.

c) Let n > 2 be an integer prime to p. Show that the polynomial &, is separable
in F4[X]. Deduce from the preceding question that all of these irreducible factors
in F¢[X] have the same degree.

d) Show that the polynomial X* + 1 is irreducible in Q[X] but that it is reducible
in F,[X] for any prime number p. Generalize.

Exercise 3.18. a) Let n and a be two integers, and let p be a prime number di-
viding @, (a) (P, denotes the nth cyclotomic polynomial). Show that p =1 (mod n)
unless p divides n.

b) Let n be any positive integer. Show that there are infinitely many prime numbers
of the form kn + 1, for k € N. (This is an elementary special case of Dirichlet’s
theorem according to which, if n and m are two coprime integers, there are infinitely
many prime numbers of the form kn + m.)
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Exercise 3.19. Let F be a finite field, ¢ its cardinality and p its characteristic.
For f € Flz1,...,zn], set S(f) = Y f(2).

zeF™
a) Compute S(zi'...zi") in terms of (i1,...,in).
b) Let fi,...,fr be polynomials in F[z1,...,z,] with degrees du,...,d,, and let
V be the set of their common zeroes in F™. i,
Let f be the polynomial defined by f = [[(1 — fZ'). Compute S(f) in terms

i=1

of card V. Deduce that if di + --- + dr» < n, cardV is divisible by p (Chevalley—
Warning’s theorem).

Exercise 3.20. Let F be a finite field, and denote its cardinality by g.

a) Show that the vector space F? is the union of ¢ + 1 lines, and that ¢ + 1 lines
are indeed necessary to cover F2. More generally, how many hyperplanes are needed
to cover F™7

b) Let Hy,..., Hq be affine hyperplanes in F" which do not pass through the origin
and which cover F™ \ {0}. Show that d > n(q —1). Show also that this lower bound
is optimal by exhibiting such a cover with d = n(q—1). (If f; is an equation for H;,

d
set f = 1] fi and consider the quantity S(f) defined in Ezercise 3.19.)

=1

Exercise 3.21. This exercise is the basis of Berlekamp’s algorithm for factoring
polynomials over finite fields.
Let P be a nonconstant separable polynomial with coefficients in the finite

field F,. We denote by Rp the ring F,[X]/(P). Let P = ﬁ P; be the factorization
of P in irreducible polynomials in Fp[X]. Let n; = deg P;.Zl

a) Show that the ring Rp, is isomorphic to the finite field Fyn;.

b) If A € Rp, let p;(A) be the remainder in the Euclidean division of A by P;. Show
that the map A — (p1(A4),...,pr(A)) is an isomorphism of rings Rp ~ ﬁ1 Rp,.

c) For A € Rp, let t(A) = AP — A. Show that ¢ is a Fp-linear endomorphism of Rp

(viewed as a Fp-vector space) which corresponds, by the previous isomorphisms, to
the map

T T
HFpni*}HFp"i7 (aty...,ar) — (af —aq,...,ak —a,).
=1 =1

d) Show that the kernel of ¢ is a Fp-vector subspace of Rp of dimension r.

e) Let a be an element in the kernel of ¢. Show that there is a monic polynomial
Q € F,[X] of minimal degree such that Q(a) = 0. Show that the polynomial @ is
separable and split over F,,.

f) (continued) If a ¢ Fyp, show that @ is not irreducible. From a partial factoriza-
tion Q = Q1Q2, show how to deduce a nontrivial partial factorization of P.
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Exercise 3.22. a) For any integer n > 1, compute the discriminant of the poly-
nomial X™ — 1.

b) Let p and ¢ be two elements in a field K. Show that the polynomial X° +pX +¢
has discriminant equal to 5%¢* + 4*p°.

c) Generalize the previous questions by computing, for any positive integer n, the
discriminant of the polynomial X™ 4+ pX + q.
Exercise 3.23. Let p and ¢ be two distinct prime numbers. Let F' be a splitting
extension of the polynomial P = X — 1 over the field F,,.

a) The Frobenius morphism ¢ € Gal(F/F,) induces a permutation of the roots
of P. Determine its decomposition into cycles with disjoint supports.

b) Show that Gal(F/F,) is a subgroup of the alternating group 2, if and only if
p is a square in Z/qZ.
Exercise 3.24 (Quadratic reciprocity). If a € (Z/qZ)", one sets (%) =1lifa
is a square in Z/qZ, otherwise (%) = —1 (Legendre’s symbol).

a) If ¢ is odd, show that (%) =qgla=1/2,

b) Using results from Exercise 3.22 and 3.23, prove the quadratic reciprocity law
(Gauss, April 8, 1796); if p and ¢ are two distinct odd prime numbers,

PY(4) _ (_{\p-D(a-1)/4
(e

c) Let p be an odd prime number. Choose a primitive 8th root of unity ¢ in an
algebraic closure of F,,. Set o = ¢ 4 ¢ 7.
Compute . Deduce that 2 is a square in F, if and only if p = +1 (mod 8).

Check finally that
2 (»*-1)/8
2) = (- :
() 1

Exercise 3.25 (Resultants and discriminant). Let

A:an()(—321)...()(—1;71):an)("_|_..._t'_ao7
B=bn(X—y1)... (X —ym) =bp X™ + -+ bo

be two split polynomials with coefficients in a field K.

a) Consider the following matrices with coefficients in K:

anp Ap—1 - .. ao
an aGn-1 ... Qg
S = ,
bm bm-1 ... bo

bm bm-1 ... bo
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where there are m lines of a’s and then n lines of b’s, and

yf*mfl Loymmel x?*mfl Logntmel
V =
Y1 e Ym T RPN In
1 s 1 1 . 1

The determinant of S is called the resultant of A and B and denoted Res(A, B). By
computing the product SV and taking determinants, show that

Res(4,B) = ai'by, [ (@ —y5) =an [[ Ba:) = (=105 [ Aws),
1<i<n i=1 j=1
1<jsm

at least when the polynomial AB has only simple roots.
b) Using Exercise 3.1, show that the previous formulae always hold.
c) f m=n—1and B= A, show that

Res(A, A') = (=1)""=D/2q, disc(A).

Exercise 3.26. Let P = an X" +an_1 X" ' +---+ao bea polynomial of degree n
with coefficients in Z. Show that disc(P) is an integer. (Use either Exercise 1.18 or
Exercise 3.25).
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A bit of group theory

This chapter explains essential notions in group theory that one uses in Galois
theory. This chapter was really taught according to the needs of students and
should be read likewise.

4.1 Groups (quick review of basic definitions)

A group is a set G endowed with an internal law (g,¢") — g * ¢’ (also called
the product of g and ¢') satisfying the following properties:

— there is an element e € G such that for any g € G, exg=g*xe =g
(identity element);

— for any g € G, there is ¢’ € G such that g* ¢’ = ¢’ * g = e (any element
has an inverse);

— for any g, ¢’, ¢ in G, one has g* (¢’ xg") = (g*g') x g" (associativity).

Numerous notations exist for the internal law besides *, for example, -, X,
+, e, x, ., etc. If there is no risk of confusion, it is common to omit the symbol
and to simply use gg’ to denote the product of two elements g and ¢’ in a
group G. One often denotes the inverse of an element g by g~*
the product is denoted -. Similarly, the identity element might be denoted eq
(to distinguish between groups), or 1, or 1.

The additive notation + is used only for commutative groups, that is,
groups such that for any elements g and ¢’, gg’ = ¢’g. In that case, the identity
element is denoted 0, or Og, and the inverse of an element g is denoted —g.
These groups are also called abelian, in honor of the Norwegian mathematician
Niels Henryk Abel.

Here are some examples of groups: the group &,, of permutations of the
set {1,...,n} (the product being composition), the group Z of integers (with
addition), the set of nonzero real numbers (with multiplication), any vector

, especially when
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space (with addition), the set of nxn invertible matrices (with multiplication),
and the set of orthogonal n x n matrices (again with multiplication).

4.2 Subgroups

If G and H are two groups, a group homomorphism f: G — H is a map f
such that f(g9g’) = f(g9)f(g’) for any g and ¢’ in G. If f : G — H is a homo-
morphism, f(eg) = em and for any g € G, f(971) = f(g)~'. An isomorphism
is a bijective homomorphism.

Let G be a group. A set H C G is a subgroup of G if e € H, the product
of any two elements in H is in H, and if the inverse of any element of H is
in H. Then the product law of G restricts to an internal law on H, giving H
the structure of a group with identity eg. If S is a subset of a group G, (S)
denotes the subgroup of G generated by S, that is, the smallest subgroup of G
containing S.

Lemma 4.2.1. Let G be a group and let S be a nonempty subset of G. The
subgroup (S) is the set of all products s; ... s,, where s; € S or 5;1 e S for
any i.

Proof. Let H be the set of all such products. Since any subgroup of G
containing S must contains these products, one has H C (S). Conversely,
S C H, hence it it is sufficient to show that H is a group. But the inverse of
81...8, € Hisequaltos;!... sf17 so belongs to H. Similarly, if s1...s, € H
and ty...t,, € H, then their product s;...s,t1...t,, € H. Moreover, eq € H
(given either by the product of an empty family of elements, or by writing it
ss~! for any element s € S). ]

The image f(G) of a morphism of groups
f: G — H is a subgroup in H. The preimage
f~Y(H') of any subgroup H' C H is a sub-
group of G. In particular, the kernel of f is
the subgroup of all g € G with f(g) = ey. It
is equal to {eg} if and only if f is injective.

If a group G is finite, we use the word or-
der as a synonym for its cardinality. The order
of an element g € G is the smallest integer
n > 1 such that ¢" = e (if there is no such in-
teger, one says that g has infinite order). This
is also the order of the subgroup (g) generated
by g in G. Observe that the group (g) gener-
ated by g is isomorphic to Z/nZ if g has finite

order n, and is isomorphic to Z if g has infinite order (ezercise).
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Proposition 4.2.2 (Lagrange). Let G be a finite group and let H be a
subgroup of G. The order of H divides that of G. In particular, the order of
any element in G divides the order of the group G.

The inder of a subgroup H of a finite group G is the quotient
card G/ card H and is denoted (G : H).

Proof. Let us define a relation in G by setting g ~ ¢’ if there exists h € H
such that ¢’ = gh. This is an equivalence relation:

— reflexivity: since g = ge and e € H, g ~ g for any g € G;

— symmetry: if g ~ ¢’, let h € H be such that ¢’ = gh. Then, g = ¢’h ™!,
hence g’ ~ g since h=! € H;

— transitivity: if g ~ ¢’ and ¢’ ~ ¢”, let h and A’ € H be such that ¢’ = gh

and ¢” = ¢’h’/. One then has ¢g"” = g(hh'). Since H is a subgroup, hh/ € H
and g ~ ¢”.
The equivalence class of an element g € G is the set gH of all gh for h € H.
Since G is a group, the map h +— gh defines a bijection from H to gH: all
equivalence classes are in bijection. In particular, if G is finite, they all have
the same cardinality, that of H.

The group G is the disjoint union of its equivalence classes for this rela-
tion ~. If there are N classes, then card G = N card H and the order of H
divides the order of G. ]

The classes gH defined above are called right cosets' of H in G. One
denotes by G/H the set of all right cosets. Similarly, one defines another
equivalence relation: g ~ ¢’ if ¢ = hg. Equivalence classes are now sets Hg
for g € G and the set of all these left cosets is denoted by H\G. When G
is finite, the two sets G/H and H\G have the same cardinality: the index
(G:H)of HinG.

There is a partial converse to Lagrange’s
theorem, attributed to Cauchy.

: AUGUSTIN
CAUCHY
17881857

Proposition 4.2.3 (Cauchy’s lemma). Let

G be a finite group and let p be a prime number

that divides the order of G. Then there is an

element in G whose order is equal to p.

w
b
<
o

Proof. When G is abelian, this is an immediate consequence of Exercise 1.15.
We then prove the proposition by induction on the order of G.

Let Z be the center of G, that is, the set of all g € G such that gh = hg
for any h € G. This is a commutative subgroup of G. If p divides the order

! Right cosets are orbits for the action of H by translation on the right in G but
some authors like Lang [7] or Bourbaki call them left cosets.
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of Z, one is done, either by induction if card Z < card G, or by the case of an
abelian group if card Z = card G.

We say that two elements x and y of G are conjugate if there is g € G such
that y = gxg~'. This is an equivalence relation in G. For « € G, let us denote
by %, its conjugacy class, that is, the set of all y € G that are conjugate
to . The map G — %, defined by g — grg~!
grg~! = hah™!, then y = h™1g satisfies yx = xy, and conversely. The set of
all such y defines a subgroup G, in G, called the centralizer of z in G. Hence,
the cardinality of %, multiplied by that of G is equal to the order of G:

is surjective. Moreover, if

card 6, = (G : Gy).

Now the group G is the union of disjoint conjugacy classes: there are elements
Z1,...,T, € G such that no two of them are conjugate, and such that any
element in G is conjugate to one of them. One has therefore the following
so-called class formula:

cardG = Z(G 1 Gy,).

i=1

Note that an element in Z is conjugate only to itself. That means that all
elements in Z appear in this sum, so that we may write

card G = card Z + Z (G: Gy,).
Since card G is divisible by p while card Z is not, there must be some i with
x; ¢ Z such that (G : G,,) is prime to p. This implies that p divides card G, .
The condition z; ¢ Z means that G, # G, hence card G, < card G, and we
conclude by induction. ]

4.3 Group actions

An action of a group G on a set X is a group morphism of G to the group &(X)
of permutations of X. In numerous cases, there is no possible confusion as to
the morphism in question and one denotes by g - z, or even gz, the image
of x € X by the permutation of &(X) associated to g.

The orbit O, of an element x € X is the set of all gz for g in G. The
stabilizer Stabg(z) of x is the set of all h € G with ha = . This is a
subgroup of G. Moreover one has gz = ¢’z if and only if ¢’¢g~!
g~ tg’ € Stabg(z), or again g’ € g Stabg (). In other words, the map G — X

r = x, that is,
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given by g — gz induces a bijection from the set G/ Stabg(x) of right cosets
of Stabg(x) to the orbit &, of .
In particular, if a finite group G acts on a set X, one has for any z € X

the equality
card G

card Stabg ()
The set X is the union of all its orbits. Moreover, for any = and y € X,

card 0, = (G : Stabg(z)) =

either their orbits are disjoint, or they are equal. If we now pick one element x;
per orbit, the set X is the disjoint union of the orbits &,,. If X is also finite,
its cardinality is the sum of the cardinalities of each O,, hence

card G
card X = ;card Oy, = Z m'

%

This is the class formula. It is very important since, applied to a well-chosen
action, it imposes quite a strong condition on the orders of various subgroups.

In fact, the proof of Proposition 4.2.3 already made use of this class for-
mula, applied to the conjugation action, which is the action of the group G
on itself defined by g - h = ghg~'. The centralizer of an element g € G is
nothing but the stabilizer of g for this action.

Left and right translations in a group are two other important examples
of actions of a group G on itself, defined by g-h = gh and ¢ -h = hg™ !,
respectively. An action of a group restricts naturally to an action of any of its
subgroups. Therefore a subgroup H C G acts on G by left or right translations;
it is easy to check that orbits of these actions are just left and right cosets.

4.4 Normal subgroups; quotient groups

The notion of normal subgroup that we now introduce appears naturally when
one wants to define quotients in the category of groups. Not every subgroup
can be the kernel of a group morphism. Indeed, let p: G — G’ be a group
homomorphism; for any g, h € G, one has

o(g " hg) = o(9) " p(h)e(g).

-1

In particular, if ¢(h) = e, one has p(g thg) = ¢(g) tep(g) = e. Hence the

definition:

Definition 4.4.1. A subgroup H in a group G is said to be normal if for any
g€ G and any h € H, g~*hg € H.

Proposition 4.4.2. The kernel of any group homomorphism is a normal sub-
group.
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Ezamples 4.4.3. a) Let G be a group. The trivial subgroups {1} and G
are normal subgroups of G.

b) Subgroups of a commutative group are automatically normal.

¢) Let Z be the center of a group G (the set of g € G such that for any
h € G, gh = hg). This is a normal subgroup of G, for if h € Z and g € G,
g thg=g lgh=he Z.

d) Let G be a group and let D be the subgroup of G (derived subgroup)
generated by commutators, i.e. , expressions of the form g;g29; ! 9y L with ¢4
and go in G. This is a normal subgroup of G. Take g € G and consider a
commutator ¢ = glgggflggl. One has

9 eg =9 (919201 "5 ")g
= (97" 919) (9 " 929)(
= (97 '919)(9" " 929)(
= hihohy *hy !,

9 91 9) (g ey )
9 '919) " (g7 g29) "

with by = g 'g1g and hy = g 'h1g, so g~ cg is still a commutator. Since the
inverse of a commutator is again a commutator, any element d in D can be
written as d = d ... d,, for some commutators d;. The formula

g g = (g7 drg) ... (97 dng)

and the above remark show that ¢~ 'dg is a product of commutators, so belong
to D, q.e.d.

Exercise 4.4.4. Show that a subgroup H C G is a normal subgroup if and
only if gH = Hg for any g € G.

The construction of a quotient group of a group by a normal subgroup will
show that any normal subgroup is the kernel of a canonical group morphism.
Let us consider the set G/H of right cosets of H and let us try to define a
group law in G/H: for g and ¢’ € G, h and h € H, one has

(gh)(g'W) = gg' (') " hg'H

and, since H is a normal subgroup of G, (¢')"'hg’ belongs to H, hence so
does (¢')"thg'h’. This shows that the right coset (gg')H depends only on the
right cosets gH and ¢'H, but not on the actual elements g and ¢’. We thus
may set

(9H) * (¢'H) = (99')H.

Now that we have explained why this definition makes sense, it is a routine
exercise to check that it endows G/H with a group structure whose identity
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is the coset H = eH, and that the map G — G/H given by g — gH is a
surjective group morphism. By construction, its kernel is H.

One virtue of quotient groups is the following factorization theorem (a
universal property, again).

Theorem 4.4.5. Let G be a group, let H be a normal subgroup of G, and
denote by m: G — G/H the canonical morphism g — gH. Let f: G — G’ be
a group morphism whose kernel contains H. Then there exists a unique group
morphism ¢: G/H — G’ such that for any g € G, ¢(n(g)) = f(g). (In other
words, pom = f.)

The kernel of ¢ is equal to w(Ker f). In particular, ¢ is injective if and
only if Ker f = H. Finally, ¢ is surjective if and only if f is.

Proof. If 7(g) = w(¢'), there exists h € H such that g = ¢g’h, which implies
flg) = f(g'h) = f(g")f(h) = f(¢’) since H C Ker f. In particular, we can
define a map G/H — G’ by associating to a coset in G/H the image by f of
any element in this coset, because this image will not depend on the chosen
element. Let us call this map ¢; by construction, the identity pom = f holds.

It is now routine to check that ¢: G/H — G’ is a group morphism. A coset
gH belongs to Ker ¢ if and only if f(g) = e, that is, if and only if g € Ker f.
This proves that Ker ¢ = 7(Ker f).

Assume ¢ is injective and let g € Ker f; one has o(gH) = f(g)H = H,
hence gH € Ker ¢ and gH = H. This implies g € H, so that Ker f C H, hence
the equality. Conversely, if Ker f = H, let g € G be such that gH € Ker .
It follows that g € Ker f, hence g € H and gH = H is the identity element
of G/H, hence ¢ is injective. Finally, since the map 7: G — G/H is surjective,
surjectivity of f and of ¢ are clearly equivalent. O

Proposition 4.4.6. Let G be a group, let H be a normal subgroup of G and
let m: G — G/H denote the canonical morphism with kernel H.

a) For any subgroup K in G/H, 7= (K) is a subgroup of G that con-
tains H, and all such subgroups are obtained in this way.

b) If K is a normal subgroup of G/H, then the composition G — G/H —
(G/H)/K is a group morphism with kernel n=1(K). It induces an isomor-
phism

G/m (K) ~ (G/H)/K.

Proof. a) Like any preimage, 7~ !(K) is a subgroup of G. Moreover, it con-
tains 7~ 1(e) = H. Conversely, let K be a subgroup of G containing H. Then
7(K) is a subgroup of G/H and 7~ !(r(K)) contains K. To show the other
inclusion, let us consider g € 7 (7(K)). It follows that 7(g) € 7(K), so
that there is k € K with 7(g) = (k). Consequently, h = gk~ is an element
of Kerm = H. Since H C K, g = hk belongs to K.
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b) The given map f: G — (G/H)/K is a surjective morphism of groups,
being the composition of two surjective group morphisms. Moreover, an ele-
ment g € G belongs to Ker f if and only if 7(g) belongs to the kernel K of the
morphism G/H — (G/H)/K, i.e. Ker f = 7~ 1(K). It follows that f induces
an isomorphism G/m~}(K) ~ (G/H)/K. O

Definition 4.4.7. One says that a group G is simple if its only normal sub-
groups are {e} and G.

4.5 Solvable groups; nilpotent groups

Let G be a group. If G has a normal subgroup N, one can in a sense “approx-
imate” the group structure of G by the combination of those of N and G/N.
More generally, it may be worth introducing a normal series in G, that is a
sequence of subgroups

{1}:G0CG1C"'CGn71CGn:G

of G such that for any integer ¢, 1 < i < n, G;_; is a normal subgroup of G;.

Definition 4.5.1. A group G is solvable if it has a normal series
{1}=GocGiC---CGp1 CG, =G

such that for any i, 1 < i < n, the quotient group G;/G;—1 a commutative
group.

This notion fits very well with subgroups and quotients:

Proposition 4.5.2. Let G be a group, and let H be a subgroup of G.

a) If G is solvable, then H is solvable.
b) If G is solvable and H is normal, then G/H is solvable.
¢) If H is solvable and normal, and if G/H is solvable, then G is solvable.

Proof. a) By assumption, there are subgroups Go C ... G, with G;_; normal
in G; and G;/G;—1 abelian. Set H; = H N G;. The subgroups H; form an
increasing sequence of subgroups in H. Let us consider the restriction to H;
of the canonical map G; — G;/G;_1 which is a group morphism. Its kernel is
equal to G;_1 N H; = H;_1. Therefore H;_; is a normal subgroup of H; and
the induced map H;/H;—1 — G;/G;_1 given by Theorem 4.4.5 is injective,
so identifies the group H;/H;_; with a sugroup of G;/G_1. In particular,
H;/H;_ is abelian. We thus have shown that H is solvable.

b) Assume moreover that H is a normal subgroup of G and let us show
that G/H is solvable. Let m: G — G/H be the canonical morphism and for
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any i, let us set K; = m(G;). Since 7 is onto, it is easy to check that the
group K;_; is normal in K;; the induced morphism G; — K; — K;/K;_4
is surjective and its kernel contains G;_;. By Theorem 4.4.5, we deduce the
existence of a surjective morphism G;/G;—1 — K;/K,_1. Since G;/G;_1 is
abelian, K;/K;_1 is abelian too. This shows that G/H is solvable.

¢) Since H is solvable, we may find subgroups

{1}:HOCH1C"'CHm:H

with successive quotients H;/H; 1 abelian groups. Since G/H is assumed to
be solvable, there is an analogous series of subgroups in G/H:

{I}ZK()CKlC"'CKn:G/H.
In the series of subgroups in G,
{1}=HycH,C---CH,=H=n1K)
cr YK c---cn (K, =G,

any subgroup is a normal subgroup of the next, with quotient an abelian
group. This is clear for the first m subgroups; for the last n subgroups, notice
that, K;_1 being normal in K;, the morphism

7T_1(Ki) L K,L — Ki/Kifl

is surjective and its kernel equals 7~ !(K;_;). This shows that 7=}(K;_1) is
normal in 7~ !(K;) and

Wﬁl(Ki)/Wil(Kifl) ~ Ki/Ki,1
is abelian, as we needed to prove. O

For finite groups, to be solvable is equivalent to an apparently more re-
strictive notion:

Proposition 4.5.3. Let G be a finite group. Then G is solvable if and only if
G has a normal series

{e¢}=GocGiC---CGp1CG, =G

such that for any i € {0,...,n— 1}, Gi41/G; is cyclic.

In particular, if G is a finite solvable group, there exists a normal subgroup H
in G such that G/H is isomorphic to Z/dZ, for some integer d > 2.
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Proof. Since cyclic groups are commutative, a group satisfying this criterion
is solvable.

For the converse, let us first show that a finite abelian group has such a
normal series. If G is a finite abelian group, we can find elements x1,...,x, €
G such that G = (x1,...,z,) (take for example all elements in G). Since
G is commutative, any subgroup of G is normal. Consequently, the chain of
subgroups

{eg} C{x1) C(x1,m2) C -+ CHay,...,20) =G

is a normal series in G. Moreover, the quotient (x1,...,x;)/(x1,...,2;_1) is
generated by x;, so is cyclic. This shows that the proposition holds for abelian
groups.

Let us now prove that any finite solvable group G has a normal series such
as stated in the proposition. By induction, we may assume that this holds for
finite solvable groups of cardinality < card G. By hypothesis, G has a normal
subgroup H # G such that G/H is commutative. By induction, there is a
normal series with cyclic quotients in H,

{6@}CG1C"'CGm=H.

By the abelian case, there is also a normal series with cyclic quotients in G/H,
{e¢/u} =Ko C--- C K, =G/H. For 1 <i<r,let Gy,q; be the preimage
of K; in G. Then G,,4,—1 is a normal subgroup of G,,+; and the quotient
Guti/Gmai—1 1s isomorphic to H;/H;_1, hence is cyclic. Finally, the chain of
subgroups

{eg}CGl C - CGmCGm+1 (@O CGm_;_r:G
is a normal series with cyclic quotients, as required. ]

A similar definition gives rise to a different, but interesting, notion.

Definition 4.5.4. One says that a group G is nilpotent if it has a normal
series

{1}=GOCG1C"'CGn_1CGn:G

such that for any i € {0,...,n—1}, G; is a normal subgroup of G and G;4+1/G;
is contained in the center of G/G;.

A nilpotent group is automatically solvable.

4.6 Symmetric and alternating groups

Recall that we denote by &, the group of all permutations of the set
{1,2,...,n}. Its cardinality is nl. A transposition in &,, is a permutation that
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switches two distinct elements and fixes all the others. The cycle (i1, ..., %m)
is the permutation such that iy +— s, ..., 4;_1 — 4y, and i, +— i1, all other
elements being fixed. Its length is m. A transposition is thus a cycle with
length 2.

In the symmetric group, it appears to be quite easy to decide if any two
elements in &,, are conjugate. Any element 0 € &, can be written as a
product of cycles with disjoint supports, whose lengths form a partition 7(o)
of the integer n, that is a decomposition n = iy +- - - +1,. with positive integers
i1,...,%-. It is common usage to write them in increasing order.

Proposition 4.6.1. Two permutations are conjugate if and only if they define
the same partition.

In particular, any two transpositions are conjugate in &, as are any two
3-cycles.

Proof. Let (mq,...,m,) be the partition associated to o and to 7. We can
write

g = (7;1,1, e ’i17m1) . (ip,ly .. .,Z'I,,mp),

for integers i . Likewise, we can find such integers for 7, say ji,. Let v be
the permutation mapping ix , to jg,r. Then, for 1 < r < my, one has

70771(].&7“) = Va(ik,r) = ’Y(Z‘k,r-i-l) = jk,r-&-la

while
Vavil(jk,’rnk) = VU(ik,mk) - ’Y(ik,l) - jk,l-

This shows that yoy ™!

=7, so that ¢ and 7 are conjugate.
The same computation shows the converse. If ¢ is as above and ~ is any

element of &,,,

’70—’771 = (’Y(il,l)a s 77(i1,m1)) s (’Y(ip,l)» R av(ip,mp))a

which is a product of cycles with disjoint supports and lengths mq,...,m,.
Two conjugate elements thus define the same partition of n. O

To give more properties of the symmetric group, we will have to use the
fact that it is generated by some very special subsets.

Proposition 4.6.2. The group &,, is generated by (at will):
a) the transpositions (i,7), for 1 <i,j <n;

b) the transpositions (i,i + 1), for 1 <i<n—1;
¢) the transposition (1,2) and the cycle (1,2,...,n).
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Proof. a) We have to show that any permutation ¢ € &, is a product of
transpositions. Let us show this by induction on the least integer k such that
o fixes k, k+ 1, ..., n. If k = 1, o is the identity, so the result is true.
Then assume that o fixes k+1,...,n, set j = (k) and define 7 = (j, k) o 0.
This is a permutation in &, fixing k + 1,...,n (note that j < k), and one
has 7(k) = (4,k)(c(k)) = (4,k)(j) = k. By induction, 7 is a product of
transpositions, and o = (4, k) o 7 is a product of transpositions too.

b) Let H be the subgroup generated by the transpositions (i, 4 1), for
1 <4 < n—1.For any two elements p < m in {1,...,n}, the product

T=(m—-1,m)o(m—2,m—1)o(p,p+1)

belongs to H and satisfies 7(p) = m, while 7 fixes m + 1,...,n. The same
argument as for a) then shows that H = &,,.

¢) Set 7 = (1,2) and let v be the cycle (1,2,...,n). We have to show that
the subgroup H generated by 7 and 7 is equal to &,,. By a computation we
did in the proof of Proposition 4.6.1,

Yy =(1,2)y = (v(1),7(2) = (2,3),

and similarly v~ 17y1=% = (i,i + 1) for any integer 4, with 1 <i <n — 1. All

these elements belong to the subgroup H. By b), H = &,,. O

We shall derive from these facts a characterization of morphisms from &,,
to any commutative group. It will turn out that the signature is essentially
the only such morphism.

To be complete, let us recall its definition and show that it is a group
morphism from &,, to {£1}. The easiest way to define the signature is to set

[ 2=o0)

e(o) = -

1<i<j<n

This is a rational number with absolute value 1 (all unordered pairs {i,j} ap-
pear both in the numerator and in the denominator), so is +1. More precisely,
e(o) = (=1)"?), where i(c0) denotes the number of inversions of the permuta-
tion o, that is the number of pairs (7, j) with ¢ < j such that o(i) > o(j).
One may check directly that e(o7) = €(0)e(7), but we nearly did so in
Section 3.4 (page 70). Consider the polynomial d = [[(X; — X;). Then,
i<j
denoting by 7 f = f(X,q),..., Xon)) the action of a pejrmutation o€ G,
on a polynomial f € Q[Xy,...,X,], we proved the equality °d = (o)d. The
fact that this f — “f is an action implies that ¢ is a morphism of groups
S, — {£1}.
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A permutation o is said to be even or odd, according to whether (o) =1
or —1. Even permutations form a subgroup 2,, C &,,, called the alternating
group. This is the kernel of ¢, hence a normal subgroup. The permutation o =
(1,2) has only one inversion, for the pair (1, 2), hence e(0) = —1. In particular,
the signature is a surjective morphism and the alternating group has index 2
in &,. Observe also that the signature of any transposition is equal to —1,
because any two transpositions are conjugate.

Proposition 4.6.3. Let A be a commutative group (with composition law de-
noted additively) and let f: &, — A be any group morphism. There exists
a unique element a € A such that 2a = 0 and such that for any o € &,

flo)=0ife(o) =1 and f(o) =a if e(o) = —1.

Proof. Since two transpositions are conjuguate in &,,, they have the same
image by f, say a € A. A transposition 7 satisfying 72 = id, one has 2a =
2f(1) = f(r?) = f(id) = 0. On the other hand, if an element o in &,, is the
product of m transpositions 74, ..., T,,, then

flo)=f(r)+---+ f(tm) = ma.

Observe that £(o) = (—1)™. Consequently, if e(0) = 1, then m is even and
f(o) =0, while if ¢(¢) = —1, then m is odd and f(o) = a. O

Corollary 4.6.4. The derived subgroup of &, is the alternating group 2,,.

Proof. Any commutator is clearly an even permutation, therefore the derived
subgroup D(&,,) is contained in 2,,. Conversely, since D(&,,) is a normal
subgroup of &,,, we may consider the quotient group A = &,,/D(6,,). Any
commutator in A is the image of a commutator in &,, by the canonical surjec-
tive group morphism &,, — A. Consequently, any commutator in A is trivial
and the group A is abelian. By Proposition 4.6.3, the map &,, — A factors
through the signature, hence its kernel D(&,,) contains 2,,. We therefore have
equality. a

We shall play again this game in the alternating group. All will result from
the three following properties.

— the 3-cycles generate 2A,,;
— the square of the 3-cycle (1,2,3) is equal to the 3-cycle (1,3,2);
— if n > 5, any two 3-cycles are conjugate in 2.

Lemma 4.6.5. The group 2, is generated by the cycles of length 3.

Proof. 1t suffices to show that the product of any two transpositions is a
product of 3-cycles, for any element in 2, is the product of an even number
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of transpositions. The formula (1,2)(1,3) = (1, 3,2) takes care of any product
with one element in common, while the formula

(1,2)(3,4) = (1,2)(2,3) (2,3)(3,4) = (1,2,3) (2,4,3)
treats the case of two transpositions with disjoint supports. ]

Proposition 4.6.6. If n > 5, there is no nonzero morphism from the alter-
nating group to an abelian group.

Proof. Let us prove, as was claimed, that if n > 5, the cycles v = (1, 2,3) and
0 = (a,b,c) are conjugate in 2A,,. We may find a permutation o in &,, with
o(1) = a, 0(2) = b and 0(3) = ¢. By an easy computation we did during the
proof of Proposition 4.6.1,

oyo~t=4.

If o belongs to 2,,, then the two 3-cycles are conjugate in 2,,, as we wanted
to show. But if ¢ is odd, we can modify it. The idea is simple: it suffices to
multiply ¢ with a transposition 7 such that 7y7~! = . Take for instance
T = (4,5). (Here we use the fact that n > 5: we have to consider two elements
outside of the 3-cycle (1,2,3).) Then one has

(or)y(or) P =a(ryr Vot =oyot =6,

which shows that v and § are conjugate in 2,,.

Assume now that n > 5 and let f: 2, — A be a morphism to an abelian
group A. Since all 3-cycles are conjugate, they have the same image in A.
On the other hand, the square of the 3-cycle (1,2,3) is equal to the 3-cycle
(1,3,2). This shows that f((1,3,2)) =2f((1,2,3)), whence a = 2a and a = 0.
Therefore, for any 3-cycle ¢ € 2,,, f(¢) = 0. Since they generate 2, f = 0.0

The next two corollaries follow immediately.
Corollary 4.6.7. If n > 5, the derived subgroup of &, is A, itself.
Corollary 4.6.8. If n > 5, U, and G,, are not solvable.

Remark 4.6.9. Actually, one can prove that for any n > 5, the group 2, is
simple. See Exercise 4.16.

4.7 Matrix groups

Let k be a field. The group of n X n invertible matrices is denoted GL(n, k). It
has three interesting subgroups: T, consisting of diagonal matrices; B, upper-
triangular matrices; and U, the set of upper-triangular matrices with only 1s
on the diagonal.



4.7 Matrix groups 97

Proposition 4.7.1. The group U is a nilpotent group. The derived subgroup
of B is contained in U. In particular, B is a solvable group.

Proof. Diagonal coefficients of the product of two matrices in B are just the
product of their respective diagonal coefficients. This shows that any commu-
tator of matrices in B belongs to U, whence D(B) C U. If we prove that U is
nilpotent, then it is solvable, so D(B) is solvable too (Proposition 4.5.2, b)).
By Prop. 4.5.2, ¢), this implies that B is solvable, for D(B) is a normal sub-
group of B with B/D(B) abelian (see Exercise 4.3).

Let us now show that U is nilpotent. Let us consider the canonical basis
(e1,...,en) of the vector space V = k™. Let Vi = 0, and for each m, 1 < m <
n, let V,,, be the vector space spanned by (e1, ..., em). We also set V,,, = 0 for
m < 0. For any integer m, let N,,, be the set of all endomorphisms u of V' such
that u(V;) C Vi_p, for all ¢. For any u € N,,, and v € Np, one has uov € Np,4p.
Since N,, = 0 for m > n, this implies that for any m > 1, endomorphisms
in N,, are nilpotent. Moreover, for all m, N, is vector subspace of the space
of all endomorphisms of V.

For any integer m > 1, let G,, denote the set of endomorphisms u €
End(V) such that v —id € N, If w = id + v and «' = id + v’ belong
to G, for some m > 1, then uu’ = id + v + v’ + vv’ belongs to G,,, since
v+v' +vv’ € Np,. Moreover, vv’ € Nay, C Nypi1. Let us also remark that for
any nilpotent endomorphism v € End(V), v™ = 0 and id + v is invertible, its
inverse being given by the formula

(id+v) ™t =id —v+0* — -+ (=1)" "

If v € N,,, this shows that (id 4+ v)~! belongs to G,,. Consequently, G, is a
subgroup of GL(V).
Let u € Gy, and let g € U. If v = u — id, one has

gug™! = g(id+v)g~" =id +gvg™.

Since v € N,,, the endomorphism gvg~' maps g(V;) into g(V;_,,) for any

integer i ; since g € U, g(V;) = V; for any integer i, so that gug~! € N,,. This
shows that gug~' € G,,, hence that G,, is a normal subgroup in U.

The preceding calculations show moreover that for any v = id + v and
u =id + v € G,

wu M (W) = ([d v+ Fw)(id —v — v +w') =id + w”,

for some elements w, w' and w” € Na,, C Ny11. In particular, Gy, /Gt is
contained in the center of U/Gp,41.
The chain of subgroups
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{1} =G, CcG,1C---CG =U
allows us to conclude that U is a nilpotent group. O

The following converse is of fundamental importance for the algebraic the-
ory of differential equations.

Theorem 4.7.2 (Lie, Kolchin). Any solvable connected subgroup of the
group GL(n, C) is conjugate to a subgroup of B.

The proof uses the following classical lemma.

Lemma 4.7.3. For any family of matrices which commute pairwise, there
is a basis in which all the matriz are simultaneously in triangular form. In
particular, any commutative subgroup of GL(n, C) is conjugate to a subgroup
of B.

Proof. Let us show the lemma by induction on n, the case n = 1 being trivial.

Let G be a family of elements of n x n matrices with complex coefficients,
commuting pairwise. If G consists only of scalar elements (also called homo-
theties), that is, elements of the form Aid with A € C, the result is clearly
true. Otherwise, we may find a nonscalar element h € G and consider V C C"
one of its eigenspaces, with corresponding eigenvalue A € C. (In particular,
d=dimV e {l,...,n—1}.) For any g € G,

hg(v) = gh(v) = g(Av) = Ag(v),

hence g(v) € V. This shows that V is invariant under multiplication by any
matrix in G. Let (e1,...,eq) be a basis of V and complete it to a basis
%A = (e1,...,e,) of C™. In this basis %, any matrix in G has a block repre-
sentation () ,,) with g € Mat(d, C) and go € Mat(n — d, C). By the usual
product of block-matrices, all such matrices g; commute with one another,
as do the matrices go. By induction, there is a basis fi,..., fg of V in which
all these matrices g; are upper-triangular, and similarly a basis fgi+1,..., fn
of vect(eg41,.-.,en,) in which all matrices go are upper-triangular. Finally,
in the basis (f1,..., fn), all matrices of G are upper-triangular, as was to be
shown. O

Proof of Lie—Kolchin’s theorem. The proof is by induction on the dimension n.

First assume that there is a subspace V' C C™, with V # 0 and V #
C™, which is left invariant by all elements of G. By taking a basis of V, a
supplementary subspace W and a basis of W, we can assume that matrices
in G are block-triangular: (901 9*2 ) The image of the group morphism G —
GL(V) defined by g — ¢; is a solvable subgroup of GL(V). By induction, there

is a basis of G such that all matrices g; are upper-triangular. Similarly, the
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image of the group morphism G — GL(W), g — ¢», is a solvable subgroup of
GL(W) and W has a basis such that all such matrices go are upper-triangular.
These bases of V and W form a basis of C™ in which all matrices in G are
upper-triangular.

We can therefore assume that no subspace of C” is invariant under G,
except 0 and C™. By induction on the least integer m with D™(G) = {1}, let
us now show that n = 1.

If DY(G) = {1}, that is if G is abelian, Lemma 4.7.3 implies that there is
an invertible matrix P such that PGP~! C B. Since the line Ce; generated
by the first basis vector e; of C" is stable by any matrix in B, the line C(Pe;)
is stable by G, hence n = 1.

Now assume we have proved n = 1 if D™ !(G) = {1} and consider a sub-
group G € GL(n,C) with D™(G) = {1} but D™~}(G) # {1}. In particular,
H = D™ 1(Q) satisfies D(H) = {1} and there is P € GL(n,C) such that
PHP~! C B. Replacing G by PGP~!, we assume that H C B.

In particular, e; is an eigenvector of any h € H. Let then V' C C" be
the subspace generated by all v € C™ which are eigenvectors of any h € H.
It contains ey, so V' # {0}. Let us show that it is invariant under G. By
linearity, it is sufficient to show that for any ¢ € G and any v € V which is
an eigenvector of any h € H, then g(v) € V. Indeed, if h € H, then

h(g(v)) = g9~ hg(v) = g(g~ " hg(v)).

Since g~'hg € H, there is A € C such that g~ 'hg(v) = Mv. It follows that
h(g(v)) = Ag(v) and g(v) is an eigenvector of h € H. Therefore g(v) € V
and V is invariant under g. The first reduction implies that V = C", so
that C™ has a basis consisting of eigenvectors of any element of H. In that
basis, any matrix in H is diagonal. A new change of basis allows us to assume
that H C T.

Let us now fix h € H, h # {1}. Since H = D™~ !(G) is a normal subgroup
of G, one has g~ 'hg € H for any g € G and h € H. Since the map G — H
given by g + g 'hg is continuous and since G is connected, its image is
connected in H. But for g € G, g~ 'hg is a diagonal matrix with the same
eigenvalues as h, and there are only finitely many such matrices. Since a
connected finite set in GL(n, C) has only one element, the map g — g~ 'hg is
constant, with value h = e~ 'he. Consequently, for any g € G and any h € H,
gh = hg. In other words, H = D™ (@) is contained in the center of G.

Let W be any eigenspace for h. For any g € G, we proved that g and h
commute, so W is invariant by g. This shows that W is stable by G. By the
first reduction, this implies that W = C™. For any h € H there thus exists
A, € C* such that h = A\,id.
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The determinant of a commutator is equal to 1. Since m — 1 > 1,
H C SL(n,C) and A} = 1 for any h € H. This shows that H is a finite
group. By the following lemma, H is connected, whence H = {1}, our desired
contradiction. O

Lemma 4.7.4. Let G be a connected subgroup of GL(n,C). Then its derived
subgroup is also connected.

Proof. The set S of all commutators in G is the image of G x G by the
continuous map (g1, g2) — 91929, ! gy 1. Therefore, S is connected.

Let S,, be the set of all products s1...8,, with s; € S and m > 1. It is
the image of S™ under the continuous map (g1,...,gm) — g1 - . gm. Since S
is connected, so are S™ and S,.

Since the inverse of a commutator is again a commutator, one has D(G) =

{e} U U Spm. Since the S,, have the identity matrix in common, D(G) is
m>1
connected, q.e.d. O

Exercises

Exercise 4.1. a) Let m and n be two coprime integers. Show that (Z/mnZ)* is
isomorphic to (Z/mZ)* x (Z/nZ)".

b) If (Z/nZ)" is a cyclic group, show that there exists an odd prime number p and
an integer m > 0 such that n = p™, or n = 2p™, or n = 4.

c) Using Exercise 3.15, show the converse of b).

Exercise 4.2. Recall that H denotes the (noncommutative) field of quaternions.
a) Show that the polynomial equation X2 = 1 has infinitely many solutions in H.
Let G be the subset {£1, +4, +j, +k} in H*.

b) Show that G is a subgroup of H*. Show that it is not commutative. It particular,
it cannot be cyclic, which shows that the conclusion of Exercise 1.16 does not hold
anymore without the assumption that the field is commutative.

c) Show that any subgroup of G is normal.

Exercise 4.3. Let G be a group.
a) Show that the quotient of G by its derived subgroup D(G) is an abelian group.

b) Let H be any subgroup of G. Show that H is the kernel of a homomorphism
from G to an abelian group if and only if H contains D(G). (You might want to
prove first that a subgroup containing the derived subgroup is normal.)
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Exercise 4.4. a) Let G be a group, and let A and B be two normal subgroups
of G such that AN B = {e}. If a € A and b € B, show that aba™'b™" = e, hence
that a and b commute. Conclude that the subgroup AB C G generated by A and B
is isomorphic to the direct product A x B.

b) Let G be a finite group, (Ai)i<i<r a family of normal subgroups of G. Let n; =

»
card A;; assume that the integers n; are pairwise coprime, and that [ n, = card G.
i=1

Show that G is isomorphic to the direct product [] A;.
i=1

Exercise 4.5 (Semidirect product). a) Let A and B be two groups, and let
¢: B — Aut(A) a morphism of groups (in other words, ¢ defines an action of B
on A by group automorphisms).

Endow the product set G = A x B by the composition defined by

(a,b) - (@, V) = (ap(b)(a’), b").

Show that it is a group law. The group G with this law is called the semi-direct
product of A and B, and usually denoted A x, B.

b) Show that the map G — B given by (a,b) — b is a surjective morphism of
groups. Show that its kernel is isomorphic to A. Show that the map B — G given
by b — (¢(b)(e),b) is a morphism of groups.

c) For any g = (a,b) € G, define o(g): A — A by o(g)(z) = ap(b)(x). Show that
o(g) is a permutation of A, and that the map o: G — G(A) is an injective morphism
of groups.

d) Let G be a group, A a normal subgroup in G, and let 7: G — B = G/A be the
canonical projection. Assume that there is a group morphism f: B — G such that
w(f(b)) = b for any b € B (one says that f is a section of 7). Show that there is a
morphism of groups ¢: B — Aut(A) such that p(b)(a) = f(b)af(b™ ") for any a € A
and any b € B. Then show that G is isomorphic to A x, B.

Exercise 4.6. Fix an integer n > 2, and let { = exp(2im/n). Consider the stan-
dard regular n-gon I' in the plane R? with vertices the points Ay of coordinates
(cos(2km/n),sin(2kmw/n)), 1 < k < n. Let O denote the origin of the plane.

Let D,, be the group of affine transformations of the plane that preserve the
vertices of I'.

a) Show that D,, contains the cyclic group of order n generated by the rotation r
of center O and angle 27 /n. Show that it contains also the orthogonal symmetry s
with respect to axis Ozx.

b) Let g € D,,. Show that g(O) = O and that det(g) € {£1}. If moreover det(g) =
1 and g fixes one vertex of I', then g = id. Conclude that D,, is generated by r
and s.

c) Show that srs = r~! and that D, is isomorphic to the semidirect product
(Z/nZ) x, {£1}, where ¢: {£1} — Aut(Z/nZ) is the map defined by ¢(¢)(m) =
em.
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Exercise 4.7. Let G be a finite group; assume that the cardinality of G is the power
of a prime number p.

a) Let X be a finite set on which G acts. Let X be the set of fixed points of G,
that is, the set of all z € X such that g -z = x for any g € G. Show that

card(X) = card(X€) (mod p).

b) Let Z be the center of G. Applying the class formula to the conjugation action
of G on itself, show that Z # {1}.

c) Let G be a finite group with p* elements. Show that G is commutative.

Exercise 4.8 (Sylow’s first theorem). Let G be a finite group, p a prime number.
Let p" the highest power of p that divides the order of G.

a) Let X be the family of all subsets of G having p” elements. Show that the
cardinality of X is not divisible by p.

b) Consider the action of G on X by left translations: if A C G, g-A = {ga; a € A}.
Show that the stabilizer {g € G; g- A = A} of any A € X is a subgroup of G with

T

cardinality < p".

c) Show that there exists A € X whose orbit has cardinality prime to p. Using
the class formula, prove that the stabilizer of A is a subgroup of G with exactly p”
elements (p-Sylow subgroup).

d) More generally, show as follows that for any s < r, G contains subgroups with
p° elements. Let X be the family of subsets of G with p® elements. Prove that
ordy(card X) = r — s, where ord,(m) denotes the highest power of p that divides
the integer m. Show that there exists A € X such that its orbit ¢(A) satisfies
ordy(card &(A)) < r—s. Show that ord,(card Stab A) > s and conclude that Stab A
is a subgroup of G with p°® elements.

Exercise 4.9 (Sylow’s second theorem). Let G be a finite group, p a prime
number. Let p” be the highest power of p that divides the order of G. Let P be a
p-Sylow subgroup of G, that is a subgroup with cardinality p".

a) Let H C G be a subgroup whose order is a power of p. Introduce the action
of H by left translations on the set G/P of right cosets modulo P, in other words,
the action defined by h - gP = (hg)P. Show that it has a fixed point: there exists
g € G such that for any h € H, hgP = gP (use the class formula). Conclude that
H C gPg™ L

b) Show that any two p-Sylow subgroups are conjugate.

c) Let N denote the normalizer of P in G, i.e. , the set of all ¢ € G such that
gPg™* = P. Show that card(N/P) = card(G/P) (mod p). Show that the number
of p-Sylow subgroups in G divides card(G)/p" and is congruent to 1 modulo p.

Exercise 4.10. Let G be a group.

a) Set D° = G, and, for each i, define D*™" to be the derived subgroup of D®.
Show that G is solvable if and only if there exists n such that D™ = {1}.
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b) Set C° = G and if i > 0, define C*** to be the subgroup of G generated by all
commutators ghg™'h™" with g € G and h € C* (descending central series). Show
that G is nilpotent if and only if there is n with C™ = {1}.

Exercise 4.11. a) Show that a subgroup or a quotient of a nilpotent group is
again nilpotent.

b) Let G be a group, H a subgroup of G which is contained in the center of G.
Observe that H is normal in G. If G/H is nilpotent, show that G is nilpotent.

c) Show that a finite group the cardinality of which is a power of a prime number
is nilpotent. (Use Exercise 4.7, b).)

Exercise 4.12. a) Let G be a finite group, H a normal subgroup of G, and let 7
denote the canonical surjective morphism G — G/H. Let p be a prime number
and P a p-Sylow subgroup in G. Show that PN H is a p-Sylow subgroup in H, and
that 7w(P) is a p-Sylow subgroup in G/H.

b) Let G be a finite group, C C G a subgroup contained in the center of G, and
let P, P’ be two p-Sylow subgroups of G such that PNC = P'NC and PC = P'C.
For any g € P, show that there are w(g) € P’ and ¢(g) € C such that g = 7(g)c(g).
Show that the map g — c(p)(P’' N C) from P to C/(P' N C) is well defined and
is a morphism of groups. Show that it maps any element to the identity. Conclude
that P = P'.

c) Let G be a finite nilpotent group. Show by induction on the cardinality of G
that G has a single p-Sylow subgroup.

d) Let G be a finite nilpotent group. Show that G is isomorphic to the direct
product of its p-Sylow subgroups, for p dividing the order of G. (Use Exercise 4.4.)

e) Conversely, show that any finite group which is the direct product of its Sylow
subgroups is a nilpotent group.

Exercise 4.13. This exercise proposes a proof of a famous theorem of Wedderburn:
Any finite field is commutative. Thus let F' be a finite field which is not assumed to
be commutative.

a) Let Z be the center of F, that is the set of all a € F such that ax = za for any
x € F. Show that Z is a commutative subfield in F'. Let g be its cardinality. Show
that there exists an integer n > 1 such that card F' = ¢".

b) Let € F. Show that the set C, consisting of all a € F such that ax = za
is a subfield in F. Show that there is a positive integer n, dividing n such that
card C; = ¢"*. (Notice that multiplication on the left by elements of C, gives F the
structure of a Cp-vector space.)

c) For z € F*, compute in terms of n, the cardinality of its conjugacy class € (x)
(the set of all aza™' € F, for a € F™*).

d) Assuming z ¢ Z, show that the cardinality of € (x) is a multiple of &, (q). ($n
is the nth cyclotomic polynomial.)

e) Using the class formula, show that ¢" — ¢ is divisible by ®@,(gq). Conclude that
n = 1, hence that F' is commutative.
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Exercise 4.14. Let G be a transitive subgroup of &,. For i € {1,...,n}, denote
by G; the set of all g € G such that g(i) =1

a) Show that G is a subgroup of G. Show that (G : G;) =n
b) Show that U G; # G. (Bound from above the cardinality of the left-hand side.)

Conclude that there is an element of G without any fixed point (Jordan, 1872).

Exercise 4.15. Let GG be a finite group acting on a finite set X. For any g € G,
denote by f(g) the number of fixed points of g.

a) Show Burnside’s formula: There are exactly

1
card G Z 1(9)
geqG

orbits of G in X. (Count in two ways the number of elements in G x X such that

g+« = z, first summing over g € G, then summing over z € X.)

b) Show that

carti G Z f(g)2
geqG

(Look at the action of G on X x X.)

c) Assume that the action of G on X is transitive. Show by summing over g € G
the quantity (f(g) — 1)(card X — f(g)) that at least card G/ card X elements of G
have no fixed point in X. (This improvement of Exercise 4.14 is due to Cameron
and Cohen.)

Exercise 4.16 (Simplicity of ,, for n > 5). In this exercise, you will prove that
the alternating group 2, is a simple group, provided n > 5.

a) Let N be a normal subgroup of 2s. Show as follows that N contains a 3-cycle:

1) First assume that N contains a double transposition, say o = (1,2)(3,4).

Show that the permutation 7 = (1,5)(3,4) is conjugate to o in 2,. Notice that o7
is a 3-cycle in N.

2) In the case where N contains a permutation of order 5, say o = (1,2,3,4,5),
show that 7 = (2,3,1,4,5) is conjugate to o and conclude that N contains the
3-cycle (4,1,2).

b) Show that s is simple.

c) Let n > 6 and assume by induction that 2,1 is simple. We want to show that
A, is simple. Let N be a normal subgroup of 2,, with N # {1} and N # 2.
Let 0 € N, o # id; show that n # o(n).

d) (continued) Let o € N \ {id}. Choose two integers i # j, distinct from n
and o(n) and consider 7 = (i,4)(n,o(n)). Show that ¢’ = oro7~' € N but that
o’'(n) = n. Using the induction hypothesis, conclude that ¢’ = id.

e) (continued) Considering the equality 707~ = o, show that 6%(n) = n and that

{o(i),0(4)} = {i, 5}
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Conclude that o = (n,o(n)), which contradicts the fact that o € 2,,. Hence N does
not exist and 2, is simple.

Exercise 4.17. Let n be any integer, with n > 5, and let G be a subgroup of the
symmetric group &,. Let d = (6, : G) be the index of G in &,.

a) Assuming that G is a normal subgroup of &,, show that G = 2,, or G = G,,.
(Recall from Exercise 4.16 that 2, is simple.)

b) Show that there is a morphism of groups &, — &4 whose kernel is contained
in G.
c) If G#%, and G # &,, show that d > n.
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Applications

We see in this chapter how Galois theory can be used to get a satisfactory
answer to the problem of constructions with ruler and compass. By analogous
methods, we discuss the problem of solving polynomial equations using radicals
and we show how Galois theory allows us to understand the explicit resolution
of equations of degrees up to 4. Finally, we will study the behavior of the Galois
group of an equation when we vary the coefficients.

5.1 Constructibility with ruler and compass

Let us go back to the problem of geometric constructions with ruler and
compass. We are mostly interested here in complex numbers which are con-
structible from the set {0,1}. By Wantzel’s theorem (Theorem 1.4.1), these
are the complex numbers z for which there is a sequence of extensions,
Q=KyC K, C Ky C---C K,, such that z € K, and such that for
any ¢, [K; : K;—1] = 2. The main result is the following.

Theorem 5.1.1. An algebraic number z € C is constructible (from {0,1}) if
and only if the degree of the extension of Q generated by z and its conjugates
is a power of 2.

To understand step by step what happens, let us begin by proving the
following proposition.

Proposition 5.1.2. Let z € C be a constructible number. Then any conjugate
of z is constructible.

Proof. Let Q = Ko C K7 C --- C K, be a sequence of quadratic extensions
such that z € K,. Let Q C L be a Galois extension such that K, C L.
If 2/ is a conjugate of z, there exists an element o € Gal(L/Q) such that
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o(z) = 2’. (This is essentially the content of the proof of Proposition 3.3.2;
see Exercise 3.6.) Set K} = o(Kj) for 0 < j < n. These are subfields of L and
for any j, K}, C K, with [K} : K} ;] = 2. Since 2’ € K, this shows that
Z' is constructible. O
Proof of Theorem 5.1.1. Now let z € C be a constructible number and let L
be the extension of Q generated by the conjugates of z. By Theorem 1.1.3,
any element in L is constructible. But Q having characteristic zero, it follows
from the Primitive Element Theorem (Theorem 3.3.3) that there is & € L
such that L = Q[«]. This element « is constructible, so its degree is a power
of 2, by Corollary 1.4.4. Tt follows that [L : Q] is a power of 2, which was to
be shown.

Conversely, assume that [L : Q] is a power of 2. Since L is generated
by the roots of the minimal polynomial of z, it is a splitting extension of a
separable polynomial (Q has characteristic zero), hence a Galois extension
(Proposition 3.2.7). The order of its Galois group G = Gal(L/K) is a power
of 2. By Lemma 5.1.3 below, applied to p = 2, there exist subgroups {1} =
Go C Gy C -+ C G, =G, each of index 2 in the next. They correspond to a
sequence of extensions of Q contained in L, Q = L¢ ¢ LE -1 C ... Cc L¢ =
L, with [L% : LC+] = (G41 : G;) = 2. By Wantzel’s theorem 1.4.1, any
element of L is then constructible. In particular, z is constructible. ]

Lemma 5.1.3. Let G be a finite group, the order of which is a power of a
prime number p. Then G has a normal series

{1}=GocGiC---CG,=G
such that for any j, (Gj : Gj—1) = p.

Proof. We will argue by induction on the order of G. By Exercise 4.7, the
center Z of G is a nontrivial commutative group. Let g € Z \ {e}; the order
of g divides card Z, hence is a power of p, say p®, with a > 1. It follows that
h = gpk1 is an element of Z of order p. Let G; denote the subgroup of G
generated by h. It is a normal subgroup of order p in G. The cardinality of
the group G/G; is a power of p, say p™. By induction, there are subgroups
H; C G/G1, for 0 < j < m, such that H;_; is a normal subgroup of H; and
(Hj : Hj_1) = p for each j. For 2 < j < m+1, let G; denote the preimage of
H;_1in G/G;. One has Gy C G2 C - -+ C Gpq1, Gj—1 is a normal subgroup
of G; and (G : Gj_1) =pfor any j <m+1, and Gq1 =G. O

5.2 Cyclotomy

This name is the concatenation of two Greek roots, and it roughly means
“cutting the circle.” Consider a regular m-gon inscribed in the unit circle.
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Its vertices divide the unit circle into n equal parts. By identifying points of
the plane with the complex numbers, and assuming that one of the vertices
is 1, these vertices correspond to mth roots of unity. Therefore, cyclotomy
characterizes nowadays any study of mathematics that is related to roots of
unity. For example, cyclotomic fields are fields generated by a root of unity,
and the roots of the nth cyclotomic polynomial are exactly the primitive nth
roots of unity.

We now obey the title of this section and begin by studying the Galois-
theoretical properties of the equation X™ = 1.

Theorem 5.2.1. Let K be a field, and let n be any positive integer. We as-
sume that the characteristic of K does not divide n. Let K C L be a splitting
extension of the polynomial X™ — 1. It is a Galois extension, and its Galois
group is isomorphic to a subgroup of the group (Z/nZ)*.

More precisely, there is a canonical injective morphism of groups

v: Gal(L/K) — (Z/nZ)*
such that for any nth root of unity ¢ € L and any o € Gal(L/K),

o(¢) = ¢,

Proof. Fix a primitive nth root of unity . Since the polynomial X™ — 1 is
separable, the extension K C L is Galois. The roots of X™ —1 are the ™, for
0<m <n—1,hence L = K(().

Let 0 € Gal(L/K); it maps ¢ to a nth root of unity, which is of the form
¢™ for some integer m whose class modulo m is well defined. Moreover, if
o(¢)* =1, one has (¥ = 1, hence o(() is still a primitive root, so that m is
prime to n. This defines a map ¢: Gal(K(()/K) — (Z/nZ)*.

Let 6 be any nth root of unity, and fix an integer a such that 6 = ¢¢. One
has

o(0) = o(¢?) = a(¢)* = (¢")* =¢"" = 0™,

and o(0) = 6#(?) . This shows in particular that the map ¢ does not depend
on the choice of a particular primitive root (.

If 0,7 € Gal(Q(¢)/Q), with o(¢) = (™ and 7(¢) = (", one has

(@o7)(C) =0o(¢") = a(¢)" =¢™,

so that p(o o 7) = ¢(0)@(T). This implies that ¢ is a morphism of groups.
Moreover, if (o) = 1, then o({) = (. Since ¢ generates Q((), this implies
o = id and ¢ is injective. a
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We saw in Chapter 1, Example 1.4.7, that it is impossible to construct a
regular 9-gon with ruler and compass. However, C.-F. Gauss had shown that
the regular polygon with 17 edges is actually constructible (as he wrote in his
mathematical diary, March 30, 1796). He was barely 19 years old. We now
prove a general result about the possibility of constructing regular polygons
with ruler and compass.

Theorem 5.2.2. A reqular polygon with n sides is constructible with ruler
and compass if and only if n is the product of a power of 2 and of distinct
Fermat primes.

Recall that a Fermat prime is a prime num-
ber of the form F,,, = 22" 41, where m is an in-
teger. Among them are 3, 5, 17, 257 and 65537,
corresponding to m = 0,...,4. Fermat had
conjectured that all F,,’s are prime numbers
but Euler showed that 641 divides F5. (Exer-
cise: prove it; show also that if n is not a power
of 2, then 2" 41 is not a prime number.) Actually, the five Fermat primes just
listed above are the only known ones! It has also been proved that Fg, ..., Fig

are not, primes.

Proof. Let & be the set of integers n > 3 such that one can construct a
regular n-gon with ruler and compass. In other words, an integer n > 3
belongs to & if and only if the algebraic number exp(2ir/n) is constructible.
Its conjugates are among nth root of unity.

Using the following remarks, however, we reduce ourselves to the case
where n is a prime or the square of a prime.

a) If n € &, then 2n € Z.

Indeed, if a regular n-gon is already drawn, one just needs, for each
edge AB of it, to draw the perpendicular to AB passing through the cen-
ter O of the n-gon, for it cuts the angle AOB into two equal parts.

b) If n € &, then any integer m > 3 dividing n also belongs to .

To construct a regular m-gon, just join every (n/m)th vertex of a regular
Nn-gon.

¢) If m and n are two coprime integers belonging to &2, then their product
mn belongs to L.

That m and n belong to & means that the two complex numbers
exp(2im/m) and exp(2im/n) are constructible. Since m and n are coprime,
there are integers u and v such that um + vn = 1, hence

exp(2im/mn) = exp (2i7r(% + %)) = (exp(2im/n))" (exp(2im/m))"
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is constructible, which in turns means that mn € 4.

To prove the theorem, we now just need to prove that the only prime
numbers in & are Fermat primes, and that & does not contain the square
of any odd prime number. By Theorem 5.1.1, these two statements reduce to
the following facts, where p is an odd prime number.

d) The complex number exp(2im/p) is an algebraic number of degree p — 1
over Q. The extension of Q generated by all pth roots of unity has degree p—1.

Let P be the minimal polynomial of exp(2i7/p). It is a monic polynomial
with integer coefficients and it divides (X? —1)/(X —1) = 1+ X +---+ XP71,
hence there is € Z[X] with

X -1
T = POQ).

Set a = deg P, b = deg Q; in particular, a + b = p — 1. Since exp(2i7/p) is not
a rational number, a > 2.

Modulo p, one has X? — 1 = (X — 1)P. By uniqueness of decomposition
into irreducible factors over Z/pZ, there are polynomials A and B € Z[X]
such that P = (X — 1)* + pA(X), Q = (X — 1)* + pB(X), Consequently,

XP—1
X-1
= (X =1+ p(AX)(X = 1)’ + B(X)(X — 1)*) + p*A(X)B(X).

P(X)Q(X)

Now evaluate the two sides of this equality at 1. If one had b > 1, it would
follow that p = p? AB(1), which is obviously a contradiction, for AB(1) is an
integer. Hence, b =0, and a =p — 1.

The last assertion comes from the fact that exp(2im/p) generates the split-
ting extension over Q of the polynomial X7 — 1.

e) The complex number exp(2im/p?) is an algebraic number of degree
p(p— 1) over Q.

We do a similar analysis with the polynomial X P* —1 divided by its factor
XP — 1, which does not vanish at exp(2in/p?). If P € Z[X] is the minimal
polynomial of exp(2im/p?), there is as above a polynomial @ € Z[X] such that

Xr' -1
Xr_1 P(X)Q(X).

Since XP* — 1 = (X — 1)”2 modulo p, we similarly find polynomials A and
B € Z[X] with P = (X—1)%+pAand Q = (X —1)*+pB, where a = deg P > 2
and b = deg Q. Evaluating the resulting equality

% = (X = 1" P4+ p((X — D)"B(X) + (X — 1)’ A(X)) + p*A(X) B(X)
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at 1, we find as above that b = 0, hence the degree of exp(2im/p?) equals
2
a=p°—p. O

Remark 5.2.5. These last two statements d) and e) are particular cases of
a general theorem of Gauss, according to which the degree of exp(2im/n)
is equal to Euler’s totient function ¢(n) (see Exercise 2.5). Together with
Theorem 5.2.1, this shows that the Galois group of the extension Q C
Q(exp(2im/n)) is isomorphic to (Z/nZ)*.

These particular cases, where n = p” is a power of a prime p, are usu-
ally proved using Eisenstein’s criterion (Exercise 1.10). Indeed, applied to the
polynomial @,-(Y +1) and the prime p, this criterion allows one to show that
&, is irreducible.

Corollary 5.2.4 (Gauss, 1801). The regular polygon with 17 wvertices is
constructible with ruler and compass.

Let us explain Gauss’s explicit resolution of the equation X'7 = 1. Let ¢ be
a primitive 17th root of unity in C. The extension Q C Q((¢) is Galois and
its Galois group is isomorphic to (Z/17Z)*. Gauss’s fundamental remark is
that this group is cyclic, generated, for example, by the class of 3. Its powers
modulo 17 are successively

1,3,9,10,13,5,15,11,16,14,8,7,4,12,2,6,1. ..

Let 0 € Gal(Q(¢)/Q) be the corresponding generator, mapping ¢ to ¢3, and
set

7

ao =Y o () =CH T+ B
k=0
7
o= o) =+ C AT
k=0

One has o(ag) = a; and o(a1) = ap. It follows that ag and a; are the two

roots of a quadratic equation in Q[X]. Precisely, one has ag + a; = —1 and
apay = —4, so that
-1+ V17
ap, a1 = ———

The choice of signs depends on the choice of ¢. If { = exp(2in/17), a numerical

calculation shows that ag = (—1 4+ v/17)/2. Set K; = Q(+/17). The Galois

group of the extension K; C Q(¢) is generated by o2.

We continue by defining, for 0 < i < 3,



5.3 Composite extensions 113

so that o(b;) = bjy1 if i = 0,1,2 and o(b3) = by. In particular, by and by are
permuted by o2, they are the two roots of a quadratic equation in K;. One
has bg + by = ag and bgbs = —1, so that

11
(a0 £ \Jag +4) = = + V1T £ /34— 2V17,

and again, choosing the positive square root for a positive real number, nu-

by, by =

DN =

merical calculations show that by is given by the formula with the + sign.

11
b, by =—7 = Zxﬁjm/?,zwzx/ﬁ.

Set Ko = Q(V/34 — 24/17). The extension Ko C Q(¢) is Galois, with group
generated by o?.
Now define, for 0 < i < 7,

Similarly,

ci =0'(¢) + " 3(Q).

The quantities co and ¢4 are permuted under o, hence are the two roots of a
quadratic equation over Ks. Concretely, co + ¢4 = ag and cocq = by, hence

Co, C4 = %(aoiuag—élbl).

Computing numerical values, with { = exp(2in/17), one then checks that
cop = 2cos(27/17) is given by the + sign, so that we have proved the following
amazing formula:

2cos(2m/17) = —é + é\/17+ é 34 —2V17

1\/
1 12v/17 — 21/34 — 2v/17 + 24/34 — 2VITVIT — 164/ 34 + 2V17.
+5\/68 + 1217 \/3 7+ \/3 TVIT — 161/34 + 2V/17

5.3 Composite extensions

In this section, we study the following situation. Let K be a field; let §2 be an
algebraic closure of K and let E, F' be two extensions of K contained in 2. We
denote by EF' the subfield of (2 generated by E and F'. This is by definition
the composite extension of E and F. Introduce also their intersection £ N F,
hence a diagram of fields as follows:
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RN

K—FENF EF—— ().

E
F
Lemma 5.3.1. If the extension K C E is Galois, then the extension FF C EF

is Galois. If moreover the extension K C F is Galois, the extensions K C EF
and K C ENF are Galois.

Proof. Assume that K C F is a splitting extension of a separable polyno-
mial P € K[X] (in other words, E is generated by the roots of P in {2).
Then F' C EF is a splitting extension of P over the field F, so is a Galois
extension, by Proposition 3.2.7. If K C F is itself a splitting extension of a
separable polynomial € K[X], then K C EF is a splitting extension of the
polynomial PQ or, preferably, of the separable polynomial 1.c. m.(P, Q) (see
Exercise 3.2). In particular, the extension K C EF is Galois. This shows the
first two assertions of the lemma.

To prove that the extension K C E N F is Galois, provided K C E and
K C F are, it suffices to check that for any K-homomorphism o: ENF — (2,
one has 0(ENF) = ENF, for then the result will follow from Proposition 3.2.7.
By Theorem 3.1.6, such a morphism o can be extended to a K-homomorphism
7: EF — (2. Since the extension K C F is Galois, 7(F) = E. Similarly,
T(F) = F. Hence, T(ENF) C ENF. By Remark 3.2.3, 7/(ENF)=ENF.0

Assume now that K C E is a Galois extension and let us show how
one can identify Gal(EF/F') with a subgroup of Gal(E/K). An element o €
Gal(EF/F) is an automorphism of EF which restricts to the identity on F.
In particular, o|x = idgx and o € Gal(EF/K). Since the extension K C E is
Galois, o(F) = E, so that o defines an element in Gal(E/K) that we denote
i(0). The map i: Gal(EF/F) — Gal(E/K) is a morphism of groups, because
it is the composition of the two natural morphisms

Gal(EF/F) — Gal(EF/K) - Gal(E/K).
Proposition 5.3.2. The morphism i is injective; its image is Gal(E/ENF).

Proof. If o € Gal(EF/F) satisfies i(0) = idg, then o restricts to the identity
on E. One thus has o(x) = z for any z in F and for any x in E, so that
o(x) = x for any x in the field generated by E and F, which is EF. This
shows that ¢ = id, hence i is injective.

Its image i(Gal(EF/F)) is a subgroup H of Gal(E/K) and corresponds by
Galois correspondence to the subfield E# of E and one has H = Gal(E/EH).
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(Recall that E¥ is the set of all x € E such that o(x) = z for any o €
Gal(EF/F).) Therefore ENF C E® but conversely, if x € E\ (ENF), one
has z € EF \ F and there is 0 € Gal(EF/F) with o(z) # x, hence = ¢ EH.
This shows that Eff = E N F; consequently H = Gal(E/ENF). O

An immediate corollary of this proposition is the following formula for the
degrees of the various extensions we have been discussing.

Corollary 5.3.3. Assume that the extension K C FE is Galois. Then,
[EF : F|=[E:ENF].
In particular, [EF : K| = [E: K|[F : K] if and only if K = ENF.

Proof. Indeed, [EF : F] is the cardinality of Gal(EF/F). By the proposition,
cardi(Gal(EF/F)) = card Gal(E/E N F'), whence [EF : F| = [E : ENF].
Consequently,

{EF5K}=[E:EQF][F:K]:W7
so that [FF: K|=[FE: F|[F:K|]ifandonly if ENF =K. 0

In the case where the two extensions K C F and K C F are Galois, we
will compute the Galois group of EF over K in terms of the groups Gal(E/K)
and Gal(F/K). First consider the homomorphism

j: Gal(EF/K) — Gal(E/K) x Gal(F/K)

deduced from the two surjective morphisms Gal(EF/K) — Gal(E/K) and
Gal(EF/K) — Gal(F/K). (They are well defined, for the extensions K C E
and K C F are Galois; see Proposition 3.2.9). If o € Gal(EF/K) restricts
to the identity on E and on F, it induces the identity on the field generated
by E and F'in {2, hence on E'F'. It follows that o = id and j is injective.

First assume that K = E N F. By Corollary 5.3.3, one has [EF : K] =
[E : K][F : K]. Since j is injective, it must be surjective.

In the general case, we have shown in Lemma 5.3.1 that the extension
K C ENF is Galois. Let us see what happens if we compose j with the
surjective homomorphisms

m: Gal(E/K) x Gal(F/K) — Gal(E/K) — Gal(EN F/K)
and
mo: Gal(E/K) x Gal(F/K) — Gal(F/K) — Gal(EN F/K).

By construction, m; o j and s o j are both equal to the natural morphism
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Gal(EF/K) — Gal(ENF/K)

corresponding to the Galois subextension K C ENF of K C EF. Therefore,
the image of j is contained in the subgroup G of Gal(E/K) x Gal(F/K)
consisting of all (o1, 02) such that (1) = ma(02).

If we show that cardG = card Gal(FF/K), it will follow that j is
an isomorphism from Gal(EF/K) onto G. If A denotes the diagonal sub-
group in Gal(E N F/K) x Gal(E N F/K) consisting of all (o,0), with ¢ €
Gal(E N F/K), we see that G is the preimage of A by the surjective mor-
phism

(m1,m2): Gal(F/K) x Gal(F/K) — Gal(EN F/K) x Gal(EN F/K).
Therefore,

card G = card Gal(E'N F/K) x card Ker(my, m3)
—[ENF:K|x[E:ENF]x[F:ENF]

=[F:K|x[E:ENF)|
=[F:K|x|[EF:F]
= [EF : K].

We have thus proved the following theorem.

Theorem 5.3.4. Let us consider a composite extension K C EF, where K C
E and K C F are two Galois extensions contained in an algebraic closure
of K. The extension K C EF is Galois and its Galois group is isomorphic
to the subgroup of Gal(E/K) x Gal(F/K) consisting of all couples (o, 7) such
that o and T have the same image in Gal(E N F/K).

In particular, if ENF = K, Gal(EF/K) can be identified with the direct
product Gal(E/K) x Gal(F/K).

5.4 Cyclic extensions

By definition, a cyclic extension is a Galois extension whose Galois group is
cyclic, hence isomorphic to Z/nZ, where n denotes the degree of the extension.

If K is a field, let us denote by p,(K), or p, in short, the (cyclic) group
of nth roots of unity in K. In this section, we will often assume that u, has
order n. In this case, it is generated by a primitive nth root of unity. If the
characteristic of the field K is equal to a prime number p, this implies that n
is not a multiple of p.

This section is devoted to the determination of the field extensions of K
which are Galois with Galois group Z/nZ.

Let us begin by an example, which in fact is the example.
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Theorem 5.4.1. Let K be a field and let n be any integer with n > 2. We
assume that card p, (K) = n.

Let a € K* and let K C L be a splitting extension of the polynomial
P =X"—a; denote by x a root of P in L.

The extension K C L is Galois. The map i: o — i(o) = o(z)/x defines
an injective group morphism from Gal(L/K) to u,(K). Let d be the smallest
positive integer such that x¢ € K. Then d divides n, and the image of the
morphism i is equal to pq(K).

In particular, the following are equivalent:

a) for any integer m > 1 dividing n, a is not an mth power in K;

b) the polynomial X™ — a is irreducible in K[X];

c) Gal(L/K) ~Z/nZ.

Proof. In L[X], the polynomial P = X™ — a can be factored as

P=X"-a= [[ (X-¢a)

CEpn

Since card pi,, (K) = n, the characteristic of K does not divide n and any root
¢z of P in L is simple, for P'((z) = n(¢z)" " = na/(¢x) # 0. In other words,
the polynomial P is separable and the extension K C L is Galois.

Any K-automorphism o of L is determined by the image o(z) of x, which
is a root of X™ — a. Then o(z)/x is an nth root of unity. This defines a map
i: Gal(L/K) — pn, such that i(o) = o(z)/x.

Observe that ¢ is a group homomorphism; if o(z) = uz and 7(z) = vz for
U, U € [iy, then

(0 oT)(xz) = o(vx) = vo(x) = uvz,

since v € K; hence i(c o 7) = i(0)i(7). The image of ¢ in yu, is a subgroup,
necessarily of the form pg for some integer d dividing n. One has [L : K] =
card Gal(L/K) = d, and d is the degree of the minimal polynomial of z over K,
for L = K[z]. Notice also that Gal(L/K) ~ p4(K) ~ Z/dZ.

Let m be any integer. One has ™ € K if and only if o(2™) = ™ for
any o € Gal(L/K). Since o(z) = i(o)z, this holds if and only if i(c)™ =1
for any o € Gal(L/K), hence if and only if (" = 1 for any ¢ in the image
of Gal(L/K) by i. Since i(Gal(L/K)) = pq(K), one has z™ € K if and only if
d divides m. Tt follows in particular that a = 2™ = (z%)™/? is an (n/d)th power
in K. If one assumes that a is not an mth power in K for any integer m > 1
dividing n, then d = n and P = X" — a is irreducible in K[X]. Conversely,
assuming that a = b° for some b € K and some integer e > 1 dividing n, the
equality

P=X"—qg=X™m°—}°¢ = (Xm_b)(Xm(e—l) _|_Xm(e—2)b+'”_|_be—l)



118 5 Applications

shows that P is not irreducible in K[X]. O

Conversely, let K — L be any finite Galois extension, with Galois group
Z/nZ. Let o be any generator of Gal(L/K). The preceding proof suggests
that we seek for an element x € L such that L = K[z] and such that o(z)/z
is an nth root of unity. Let { € u, be any primitive nth root of unity and let
us define, for ¢t € L, the Lagrange’s resolvent of t, by the formula

r=t+Cto(t)+ -+ M),

It is proved in Exercise 3.12 that the elements of Gal(L/K) are linearly inde-
pendent over K. Consequently, one may find ¢t € L such that x # 0. Then

o(@) =o(t) + (o () + -+ T (E) = Ca,

since 0™ = id and ¢" = 1. By induction, for any k € {0,1,...,n — 1}, one has

ot (x) = CFa
It follows that for any integer k, o%(z") = a". Since Gal(L/K) =
{id,0,0%,...,0" '}, a = 2™ belongs to K.
Let
n—1 n—1
P=X"—a=[[(X-¢) = [[(X - o¥(x)).
k=0 k=0

It is a separable polynomial in K[X], split in L. Consequently, the extension
K C K(z) is a splitting extension of the polynomial P. Since Gal(L/K) acts
transitively on its roots, this polynomial is irreducible. This implies [K(x) :
K] = n, and since one has [L : K| = n, it follows necessarily that L =
K(z), hence x is a primitive element of the extension K C L, with minimal
polynomial X™ — a. (See also Exercise 3.8.)

We finally have proved the following theorem.

Theorem 5.4.2. Let K be a field and let n be any integer > 2 such that
card pu, (K) = n.
If K C L is a Galois extension whose Galois group is isomorphic to Z/n’Z,

there exists a € K such that L is a splitting extension of the irreducible poly-
nomial X" —a € K[X].

5.5 Equations with degrees up to 4

We are now going to analyse equations of degree < 4 in light of Galois theory.
What will allow us to explicitly solve such equations is that in each of the
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three groups G5, G35 and G4, there is a normal series such that the successive
quotients are cyclic (with order 2 or 3), i.e. , these groups are solvable. By
Corollary 4.6.8, this does not happen in &,, for n > 4. Recall that the symbol
< means that the group on the left is normal in the next, and the number
above it indicates the order of the quotient. Also recall that one denotes by
V4 the Klein four-group in 244, the four elements of which are the permutations

id, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)

on the set {1,2,3,4} (these are the products
of two transpositions with disjoint supports,
plus the identity). This group is isomorphic
to (Z/2Z)*. Now, one has the following nor-
mal series:
(1} =% 26, = 2/2Z
{1}4((1,2,3)) 425 3 8

1 3{,0,2)6,49 2V, 390,56,

In this section, we consider only fields Feliz Klein (1849-1925)
whose characteristic is neither 2 nor 3.

Let K be such a field and let P be a monic polynomial in K[X] with degree
n < 4. Let K C L be the splitting extension of P contained in some fixed
algebraic closure {2 of K. (All extensions in this section will be assumed to live
in £2.) Denote by 1,2, ...,y the roots of P in L and let G = Gal(L/K).
This is naturally a subgroup of G,,.

The intersections with G of the above-written subgroups of &,, define
a normal series in G, and the successive quotients are cyclic groups with
order < 3 (they may be trivial). Such a series corresponds to a chain of Galois
extensions. We already explained in Chapter 3, Prop. 3.4.2, how the subgroup
A, C &, corresponds to the extension generated by a square root of the
discriminant of P.

Let us first consider degree 2. Then P = X2 +aX 4+ b for a, b € K and
the discriminant of P is equal to A = a? —4b. If A is a square in K, the roots
of P belong to K and G = {1}. Otherwise, L = K(v/A) has degree 2 over K.
We can order the roots so that z; — zo = VA. Together with the relation
1 + 29 = a, this determines 2, = (a + VA)/2 and x5 = (a — VA)/2.

Assume now that P is a separable polynomial with degree 3 in K[X] :

P=X34a1X?+axX + as.
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The change of variables Y = X +a;/3 allows us to assume that the sum of its
roots is equal to 0 or, in other words, that P is of the form P = X3 + pX +gq.
Its discriminant is then equal to D = —4p® — 27¢* (Example 3.4.1). Let us
consider the extensions ) 5
K CKWA)CL,

where each extension is either trivial, or Galois with Galois group the cyclic
group of cardinality indicated above the inclusion sign. If the polynomial P
is irreducible, we already can deduce from this the Galois group of L over K.
Indeed, the degree of the extension K C L is a multiple of 3 and Gal(L/K)
is 63 when A is not a square, and is 23 if A is a square in K.

To give explicit formulas for the roots of P, we first have to adjoin v/A.
The remaining extension K (v/A) & L is either trivial if the field K (VA)
contains the three roots of P, or cyclic with Galois group Z/3Z.

Proceeding as in the case of extensions with a cyclic Galois group (Sec-
tion 5.4), let us first add to K (v/A) the cubic roots of unity p and p®. These
are the roots of the polynomial X2 + X + 1. Recall that we may assume

11 , 1 1
R A A A

where v/—3 denotes a square root of —3 in K(\/Z, p). In particular, p — p? =
V=3. Set K' = K(p) and L' = L(p).

The resulting extension K’(v/A) C L’ is either trivial or cyclic with or-
der 3. Corresponding to the circular permutation (1,2, 3), there are two La-
grange’s resolvents that one can introduce:

a =1+ pry+pPes and B =z + pPas + pas.

Let us now compute o and 33:

o = 23+ 23+ 28+ 6z12073+3p(w w0 + 2373 +2521) +3p7 (2125 + 2223 +377)

and (3% is given by the formula obtained by switching p and p?. The first
term in these expressions is a symmetric function of the roots, hence can be
expressed with p and q. Explicitly:

o3+ ad 4 s 4 6xiw0w3 = (11 F a0 +23)° — 3(2Fr +...)
= —3(3:1902(301 +z2) + .. )
= —3x122(—x3) — ...
=9z12903 = —9q.

The two other terms are not symmetric functions, and we cannot hope for
them to be, otherwise a® and % would always belong to K’. However, we
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know that they belong to K'(v/A) and the aim of the game is to find a
formula for them! Since A has two square roots, we have to choose one of
them and we set

VA = (21 —x0) (21 —3) (22 —23) = (22w9+a20s+2321) — (2102 + 20024 2322).

Defining

2 2 2 2 2 2
A =2z + 2523 + 2521 and B = z125 + x225 + 2327,

we find the relations
A+ B=3¢ and A—B=+VA,

hence 3 i 3 )

Let us write down these expressions in the formulae for o® and 83:

a® = —9¢+3pA+3p°B

3 1
—9¢ + 5q(3p +3p%) + 5\/2(3,0 —3p%)

27 3
=——q+ f\/—S\/Z

2 2
and
27 3
ﬁg = —?q — 5\/ —3\/Z

Moreover, since o(a) = p~ta and o(8) = p~23, one has o(aff) = af and
aff € K'. Actually,

af = (z1 + pra + p*xs)(w1 + p*a + prs)
— a2+ 23+ 23+ (p+ pP) (@13 + 22 + 3531
(1 + 20+ 23)2 + (p+ p? — 2) (w129 + Tox3 + T371)

= —3p.
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To derive explicit formulae for xy, 2 and x3, it remains to note that one
has a Cramer system with three linear equations in three unknowns:

x1+ro+2x3=0
T +px2—|—p2x3:a

I —+ pzl’g —+ pxg = ﬂ

Therefore,
1 1
1 1
To = gpza + gpﬁ
1 1 o
T3 = 3P + gpgﬁ- \

Jerome Cardan (1501-1576)

These are “Cardan’s formulae.” (Concerning history, Jerome Cardan had
bought them to Tartaglia under the promise of not publishing them, a promise
which was broken when Cardan published his Ars magna sive de regulis al-
gebraicis liber unus in 1545. Before that, Scipione del Ferro, an Italian like
Cardan, had discovered how to solve equations of degree 3 but only at the
moment of his death did he explain his method, and only for a particular
casel!)

In practice, if one wants to solve a cubic equation, this can all be ignored
and one needs to remember only the following procedure: write one of the
roots © = u + v with uv = —p/3, then expand

0= (u+v)*+plutv)+q=u>+0>+3uv(u+v)+plutv)+q=u’+v>+gq,
so that u® and v are solutions of the quadratic equation

X2+qX—£:O.
27

Therefore, the value of u? can be deduced from one of the square roots of the
discriminant ¢ + %p?’ = —A/27, then the value of u through a cubic root,
and finally the value for = u — p/3u. (This works well for p # 0, but the
case p = 0 is easy.)

You might also notice that when z1, zo and x3 are real numbers, A is a
positive real number, hence Cardan’s formulae use complex numbers. This is

the so-called casus irreductibilis, and there is no way to avoid it (see Exer-
cise 7.2).
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Let us finally explain how to solve equations of degree 4. Let
P=X*'4pX?4+gX +r

be a monic polynomial of degree 4, where the coefficient of X? is assumed to
be 0 up to a linear change of variables. Let us recall the sequence of normal
subgroups in Gy:

(1} 3{1,(1,2)3,4) 2Vi 390, 26y,
hence a chain of Galois extensions
2 3 2 2
KCKWNA)CK, CK,CL.

(The numbers above the inclusion symbol mean that the extension is either
trivial, or cyclic with corresponding degree.) We now can use a similar ap-
proach to the one we gave for degree 3.

Let us immediately introduce a resolvent polynomial corresponding to the
extension K C Kj. The polynomial R; = (X7 + X3)(X3 + X4) is invariant
under the permutations of Vj, and its orbit under the symmetric group &,
consists of the three polynomials

Rl, Ry = (X1 +X3)(X2 +X4) and R3 = (Xl +X4)(X2 +X3).

It follows first that 6; = (z1 + z2)(z3 + x4), 02 = (1 + x3)(x2 + x4), and
03 = (x1 + x4) (w2 + x3) belong to K; = LY, and second that the degree 3
polynomial

Q(X) = (X — 01)(X — 02)(X — 03)

has its coefficients in K. This polynomial is usually called the Lagrange’s
resolvent polynomial of the quartic equation. If P is separable, which we
assume, then 61, 65 and 03 are distinct. In fact, one has

01 — 0> = (24 — 21) (22 — 23),

and similar formulae for 65 — 63 and 6; — 6. This shows moreover that the
discriminant of () is equal to that of P.

Exercise 5.5.1. Show that Q(X) = X* — 2pX? + (p> — 4r) X + ¢*.

Assume now that we have determined 61, 65 and 03, e.g. , using Cardan’s
formulae. By the relations (z1+x2)(z3+24) = 01 and (x1+x2)+(z3+24) = 0,
we see that 1 + x2 is a square root of —6;, say v/—6;. Similarly, 1 + =3 and
r1 + x4 are square roots of —fs and —03 respectively. Pay attention to the
fact that these three square roots cannot be taken arbitrarily: the degree of
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the extension Ky C L divides 4 and three “independent” square roots would
make the degree a multiple of 8. Actually, one has

V=01 =027/ =05 = (21 + 32) (w1 + 23) (21 + 74)

=23 + 23(20 + T3 + T4) + T1T2x3 + T1ToTy + T1T3T4 + ToT3T4 = —q.
If ¢ = 0, the quartic equation is “biquadratic” and can be solved easily.
Otherwise, if ¢ # 0, the ; are nonzero and this formula computes /—6f3 =

—q/\/ —91\/ —92. Then,
201 =311+ 2o+ a3+ 24 = /=01 +/—02 ++/—03

and analogous formulae for x5, x3 and 4.

Assuming that P is irreducible in K[X], let us determine the various pos-
sible Galois groups.

First observe that the extension K(v/A) C K; has degree either 1 or 3,
for it is Galois and its Galois group is a subquotient of ,/Vy ~ Z/3Z. This
shows that the polynomial @) cannot have an irreducible factor of degree 2
over K(v/A). Therefore, it is either split or irreducible over K (v/A). In this
last case, the degree [L : K] is divisible by 3 and by Cauchy’s lemma (Propo-
sition 4.2.3, but you might want to prove it by hand here), Gal(L/K) contains
an element of order 3, hence a subgroup of order 3. But there are precisely
four such subgroups in &4, denoted Hy, ..., Hy, where H; is generated by any
3-cycle which fixes i. (For example, H; is generated by the 3-cycle (2,3,4).)
If g € G4 maps i to j, then gH g~ ' = H;; since Gal(L/K) acts transitively
on {1,2,3,4}, as soon as Gal(L/K) contains one of the H;, it contains the
other three, hence all 3-cycles, hence all of 4. We just proved that if @ is
irreducible over K(v/A), then Gal(L/K) contains 2.

If moreover A is a square in K, one has Gal(L/K) C 24, whence the
equality. If A is not a square in K, one has Gal(L/K) = &,.

Let us now assume that the resolvent polynomial @ is split in K (\/Z),
i.e. , assume that K; = K(v/A). Since P is irreducible, [L : K] is a multiple
of 4. Moreover, [L : K| divides 8, hence one has [L : K] =4 or 8.

If A is a square in K, one then has Ky = K and Gal(L/K) C Vj. Since
no proper subgroup of Vj acts transitively on {1,2,3,4}, one necessarily has
Gal(L/K) = Vj in this case.

If Ais not a square in K, one has [K; : K] = 2. Therefore, [L : K] =4if L
is generated by one of the square roots of the —6;, and [L : K] = 8 otherwise.
In the first case, Gal(L/K) is a transitive subgroup of order 4 in &4, not
contained in 24, which leaves only the cyclic group generated by a circular
permutation. In the other case, Gal(L/K) has 8 elements and is isomorphic
to the dihedral group Dy4. (Remark: it is one of the 2-Sylow subgroups of Gy,
generated by a 4-cycle (a,b, ¢, d) and the transposition (a,c).)
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5.6 Solving equations by radicals

In this section, I explain the relationship discovered by Galois between the
possibility of solving a polynomial equation with radicals and the solvability
of its Galois group. This relationship simultaneously generalizes the following
results:

— Theorem 5.1.1 concerning constructibility with ruler and compass (on
one hand, a group with cardinality a power of 2 is solvable, see Exercise 4.11;
on the other hand, constructible numbers are contained in an extension ob-
tained by successively adding square roots);

— the explicit solution of equations with degree 2, 3 or 4 which I explained
in the previous section (as I said there, the groups G5, &35 and &4, and their
subgroups, are solvable);

— Abel’s theorem (see Corollary 5.6.5 below) that the general equation of
degree n > 5 is not solvable by radicals.

To simplify, we will only consider in this section fields of characteristic
Zero.

Definition 5.6.1. Let E be a field with characteristic zero, and let E C F be
a finite extension.

We will say that the extension E C F' is elementary radical with expo-
nent n, if there is some x € F such that F = Elx] and 2™ € E.

We will say that the extension E C F is radical if there are subfields
E =FE,C FE, C --- C E, = F such that the extension E;,_1 C FE; is
elementary radical for any i € {1,...,n}.

Finally, we will say that the extension E C F' is solvable by radicals, or
simply solvable, if there is a finite extension F C F' such that the extension
E C F’ is a radical extension.

Proposition 5.6.2. a) Let E C F be a finite extension and K be any
field such that E C K C F. If the extension E C F is radical, then the
extension K C F 1is itself radical. If the extension E C F is solvable, then
both extensions E C K and K C F are solvable.

b) Let E C Fy and E C Fy be two finite isomorphic extensions. If E C Fy
is a radical extension (resp. a solvable extension), then so is E C Fy.

c) Let 2 be a field containing E and let E C F and E C F' be two radical
(resp. solvable) extensions contained in 2. Then the composite extension E C
FF' is radical (resp. solvable).

d) Let E C F a finite radical (resp. solvable) extension. Then its Galois
closure (in any algebraic closure), E C F8, is again radical (resp. solvable).

Proof. a) is obvious from the Definition.
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b) Assume the extension £ C Fj to be radical. Let E = Ey C E; C
--- C E,, = F} be a chain of subfields such that the extension E;_; C E; is
elementary radical for any integer i. Let o: F} — F5 be any E-isomorphism.
For any i, the extension o(E;_1) C o(E;) is elementary radical, for if F; =
E;_1(x;), with z]'* € E;_4, one has o(E;) = o(E;_1)(c(z;)) and o(z;)™ €
o(E;_1). This shows that the extension o(F) C o(F}) is radical.

Now assume that the extension £ C Fj is solvable and let F| be some
extension of Fy such that the extension £ C F] is radical. Fix an algebraic
closure {2 of Fy; by Theorem 3.1.6, there is a field homomorphism ¢’: F} — (2
such that o’|p, = 0. Consequently, the extension E C ¢’/(Fy) is radical, and
the extension E C F5 is solvable.

c)Let E=EyCE1C---CE,=Fand E=EyCE{ C---CE], =
F’" be two chains of fields, the extensions E;_1 C E; and E]_; C E! being
elementary radical. If y; is an element in E such that Ef = E!_,(y;), a power
of which belongs to E;_;, then the extension FE; ; C FE] is elementary
radical, for FE, = FE!_,(y;). The chain of elementary radical extensions

E=EyCcFE,C---CE,=FCFE|CFE,C---CFE|, =FF'

shows that the extension E C FF’ is radical.

Assume that the two extensions F C F' and E C F’ are solvable, and let
F C L and F’ C L' be extensions such that ¥ C L and E C L’ are radical. By
assumption, the fields F' and F’ are contained in {2, which we can assume to
be algebraically closed. (Otherwise, replace {2 by any algebraic closure.) Then
there is an F-homomorphism o: L — {2 and a F’-homomorphism o': L' —
2. By b), the extensions E C o(L) and E C ¢'(L’) are radical, and so is
the extension F C o(L)o’(L'). Since E C FF' C o(L)o’(L'), the extension
E C FF’ is solvable.

d) Let §2 be an algebraic closure of F. The Galois closure of an exten-
sion E' C F is the subfield of {2 generated by all o(F'), with o running along
the set of all E-homomorphisms from F' to 2. By b), each extension E C o(F)
is radical (resp. solvable). An obvious induction using ¢) now shows that the
extension E C [[o(F) is radical (resp. solvable). O

Theorem 5.6.3. Let E be a field of characteristic zero. A Galois extension
E C F is solvable if and only if its Galois group Gal(F/E) is solvable.

Before proving this very important theorem, it might be worth recalling
the Galois theory of elementary radical extensions given by Theorem 5.4.1 and
its converse, Theorem 5.4.2, showing that that Galois extensions with Galois
group Z/nZ are elementary radical, since we assumed that card ., (E) = n.

Proposition 5.6.4. Let E be a field such that card u,(E) = n.
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Any elementary radical extension E C F of exponent n, is Galois and
Gal(F/E) can be identified to a subgroup of Z/nZ. (It follows that there is an
integer d dividing n such that Gal(F'/E) ~ Z/dZ.)

Conversely, any Galois extension E C F with Galois group Z/nZ is ele-
mentary radical, of exponent n.

The Proof of Theorem 5.6.3 involves four steps.

a) Let the extension E C F be radical, Galois, and assume that E contains
a root of unity of order [F' : E]. Then Gal(F/E) is a solvable group.

Let us show this by induction on the degree [F : E]. Let EC By C--- C F
be a chain of (nontrivial) elementary radical extensions. Set G = Gal(F/E)
and H = Gal(F/E;). The extension E; C F is radical and Galois. Since
[F' : E4y] and [Ey : E] both divide [F' : E], E contains a primitive root of
unity of both orders. By induction, the group H is solvable; by the preceding
proposition, the extension £ C FEj is Galois and its Galois group is cyclic.
Consequently, H is a normal subgroup of G and G/H ~ Gal(E/E,) is a cyclic
finite group. It now follows from Proposition 4.5.2; ¢), that G is a solvable
group.

b) Let E C F be a solvable Galois extension, then Gal(F'/E) is a solvable
group.

Let FF C Fi be a finite extension such that the extension E C Fj is a
radical extension. Let {2 be an algebraic closure of K containing F; and let L
denote the Galois closure of the extension £ C Fj in 2. The extension &£ C L
is radical and Galois. Denote also by K the extension of E generated in {2 by
a primitive root of unity of order [L : E].

By Proposition 5.6.2, c), the extension K C KL is radical and Galois.
Since its degree [KL : K| divides [L : E], a) implies that Gal(KL/K) is a
solvable group. On the other hand, the extension E C K is Galois, and its
Galois group is a subgroup of (Z/NZ)*, where N = [L : E] (see Section 5.2).
Therefore, Gal(K L/K) is a normal subgroup of Gal(K L/FE) and the quotient
Gal(KL/FE)/Gal(KL/K) is abelian, because it is isomorphic to Gal(K/E).
Since Gal(KL/K) is solvable, it follows from Prop. 4.5.2, c), that the group
Gal(KL/FE) is solvable. Since £ C F is a Galois extension with F' C KL,
Gal(F/E) is a quotient of Gal(K L/E). This shows that Gal(F/E) is a solvable
group.

¢) If Gal(F/E) is a solvable group, and if E contains a primitive root of
unity of order [F : E]. Then the extension E C F is radical.

Let us show this by induction on [F' : E]. The group G = Gal(F/E) is
solvable. By Proposition 4.5.3, G has a normal subgroup H, such that G/H
is cyclic. Consequently, there exists an integer d > 1 dividing [F : E] such
that G/H is isomorphic to Z/dZ. Therefore, the field extension E C F¥ is
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Galois, and its Galois group is Z/dZ; by Proposition 5.6.4, this extension is
elementary radical. (Observe that E contains a primitive dth root of unity.)
The extension FH C F is Galois and its Galois group is equal to H, so is
solvable (Proposition 4.5.2; a). Since [F : FH] divides [F : E], F¥ contains a
primitive root of unity of order [F : F¥]. By induction, the extension F# C F
is a radical extension. This shows that the extension ' C F' is radical.

d) If Gal(F/E) is a solvable group, the extension E C F is solvable.

Let {2 be an algebraic closure of F' and let K be the field generated in {2
by a primitive root of unity of order [F' : E]. The extension E C K is radical,
Galois, and its Galois group is abelian. The extension K C K F is Galois, and
its Galois group is solvable, for it is a subgroup of Gal(F/E). Since [KF : K]
divides [KF : E], K contains a primitive root of unity of order [KF : K], it
follows from c) that the extension K C K F is radical. Therefore, the extension
E C KF is radical and the extension ¥ C F is solvable. ]

Solving the “general equation of degree n” over some field K means being
able to give formulae for solving any equation of degree n with arbitrary
unspecified coefficients. In more precise terms, we want to solve the equation

X" +a X" '+ ta,,

in which coefficients a1, ..., a, are indeterminates. This is a polynomial equa-
tion over the field of rational functions K(ai,...,a,) in n indeterminates.
By Exercise 3.11, its Galois group is equal to the full symmetric group &,,.
Since this group is not solvable for n > 5 (Corollary 4.6.8), it follows from
Theorem 5.6.3 that the general equation of degree n is not solvable by radi-
cals, a result which had been first anticipated by the Italian mathematician
P. Ruffini in 1799 and proved by N. Abel in 1826.

Corollary 5.6.5 (Abel). Let K be a field.
Forn > 5, the general equation of degree n,

X"+ X" 14+ +a,=0,

THEY NIUNHH STHIN

viewed as a polynomial equation over the field
K(ay,...,a,) of rational functions in n inde-
terminates and coefficients in K, is not solvable by radicals.

You will find below, and also in some exercises, explicit examples of poly-
nomial equations (over the field of rational numbers) which are not solvable
by radicals.
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5.7 How (not) to compute Galois groups

In many actual applications, one considers a separable polynomial P, irre-
ducible or not, with coefficients in a field K, and a splitting extension K C L
of the polynomial P, so that L is generated over K by the roots z1,...,z, of P
in an algebraic closure of K. As in Section 3.3, the Galois group G = Gal(L/K)
is naturally a subgroup of the group of permutations of {x1,...,z,}, hence
can be identified with a subgroup of the symmetric group &,,.

The first result of this section shows that, provided one knows how to
factor polynomials with many indeterminates and coefficients in K, then one
can explicitly determine the group G.

The group G = Gal(L/K) acts on the ring L[Y1,...,Y,] coeflicientwise,

hence also on the the field of rational functions L(Y1,...,Y,), which is its
field of fractions. It also acts on the ring of polynomials L[X,Y7,...,Y,].
To simplify notation, we will write Y as an abbreviation for Y7,...,Y,. For

example, we write L[Y] for L[Y1,...,Y,] and L(Y") for L(Y1,...,Ys).
For any 0 € G,,, we let

§o = 1Yoy + -+ 2 Yom) € LIY].
Lemma 5.7.1. a) For any element 7 in the Galois group Gal(L/K), one has

T(ga’) = go‘r*l .

b) The extension K(Y') C L(Y') is Galois, with Galois group G.
c) Moreover, £ = 1Yy + -+ 4+ 2, Yy, is a primitive element.

Proof. For any T € GG, one has
ZT 0'(1 Zw'r(z)ya(z) = Z :EjYU(Tfl(j)) = 507‘*17
i=1 i=1 j=1

which proves a).
b) If R=P/Q € L(Y), one can write

T#1
) TE}}{H 0 T@
a new fraction whose denominator D belongs to K[Y] since it is clearly in-
variant under any 7 € G. Let N = RD be its numerator, then R is invariant
under G if and only if N is. It follows that L(Y)Y = K(Y), and by Artin’s
lemma (Prop. 3.2.8), the extension K(Y) C L(Y) is Galois, with Galois
group G.
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c)Let £ =&q=21Y1+ -+ x,Y,. Forany 7 € G, 7(§) = £,-1, so that
7 = id is the only element of G such that 7(§) = £ This shows that the
extension K(Y') C L(Y') is generated by &. O

It follows from the Lemma that the minimal polynomial of £ over K(Y')
is equal to

M(T) = [[(T—7) = [[(T-¢&).

TEG TEG

It belongs to K[Y,T] and is irreducible in K(Y)[T], hence is irreducible
in K[Y,T] for the ring K[Y] is a unique factorization domain.

Theorem 5.7.2. Let us define a polynomial in variables X, Y1,...,Y, by the
formula

Zp(T) = H (T -¢&) = H (T = (21Y5) + -+ 20 Yo(m)))-

occ6, ceS,

This is a separable polynomial with coefficients in K.

Let M be the unique irreducible factor of Zp in K(Y)[T] which is monic
in T and divisible by T — & in L(Y)[T].

Then M = M, and a permutation o € &, belongs to G if and only if

M(T,Ya,...,Yn) = M(T, Yoy, -+, Yo(m)-

Proof. Any 7 € G induces a permutation of the roots of Zp, since 7(§,) =
&,r-1, hence 7(#p) = Zp for any 7 € Gal(L/K) and the coefficients of Zp
belong to K.

Since M and M have the common factor X —¢ in L(Y")[T], it follows from
Corollary 2.4.3 that M and M, have a common factor in K (Y')[T]. Being both
monic and irreducible in K(Y')[T], they are equal and

M(T,Yy,...,Y,) = H (T — (21 Y1)+ + 2, Yo ()
T€G

Finally, for ¢ € G,,, one has

M(Ta Yo(l)v ey Ya(n)) = H (X - x1YT(O'(1)) - 5Ean'r(o'(n)))
TEG
= H (X - mly‘r(l) - anT(n))a
T€Go
so that

M(vaa(l)a'~-7ya(n)) = M(vaia"'vxl)

if and only if Go = G, which means exactly that ¢ € G. ]
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However nice it may look, this theorem is of almost no practical use. For
example, if K is the field of rational numbers, the complexity of factoring
multivariate polynomials of large degree (deg Zp = n!) is tremendous and
this approach rapidly fails, even on the fastest available computing systems.
We will still deduce from it a fundamental theoretical consequence concerning
the behaviour of the Galois group of a polynomial by specialization of its
coefficients, which is the subject of the next section.

Observe that the polynomial Zp defined in the theorem is symmetric
inYy,...,Y,, and is independent of the particular numbering of the roots. On
the contrary, its irreducible factor M depends on the chosen numbering, as
well as the Galois group, viewed as a subgroup of a symmetric group. Let us
make this dependence explicit.

Let P € K[X] be a separable polynomial of degree n and let K — L be a
splitting extension of P. Let R be the set of roots of P in L. A numbering of R
is a bijection v: {1,...,n} = R; it defines an embedding \,: Gal(L/K) —
&, such that

v(A(9)(1) = g(v(i), ge€Gal(L/K), ie{l,...,n}.

Denote its image by G, = A\, (Gal(L/K)). Observe that the polynomial Zp
satisfies

Zp(T) = H (T — (o yV1 4+ 21y Ya))
cEG,

= J] @-woyi+ - +vm)yn)),

numberings v

the last product being over all numberings of the roots of P. Let Zp, denote
the minimal polynomial of & = v(1)Y; + --+ + v(n)Y,, introduced above, so
that

Rpy(T Y1, .. V) =[] (T = (rw@)Y1 + - + 7(v(n))Yn))
T€G

= [I (T~ we@)Vi+ +v(o(n)Ya)).

oeG,

If v is another numbering, there is a permutation o € &,, such that (i) =
v(o(i)) for any i € {1,...,n}. Then either Zp, and Zp, are coprime, or
they have a factor in common. In this case, they are necessarily equal since
they both are irreducible and monic; moreover, one has o € G,,. This implies
that #Zp is the product of Zp o, the o being some representatives in &,
of all left cosets of G,. The embeddings of the Galois group into &,, defined
by @ and v satisfy the relation
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/\u (g) = Uﬁl/\V(g)U-

In particular, G, = 0~ 'G,0 is conjugate to G, in G,,.

5.8 Specializing Galois groups

Before I give a general definition, let me explain two important examples:

a) Let P be a monic polynomial with integer coefficients, and let G’ denote
the Galois group of a splitting extension of P over Q. For any prime number p,
one can reduce the polynomial P modulo p; hence one obtains a new Galois
group G,, corresponding to a finite extension of Z/pZ.

b) Let P € Q(t)[X] be a polynomial with coefficients in the field Q(t) of
rational functions, denote by G the Galois group of a splitting extension of P
over Q(t). For any rational number « which is not a pole of the coefficients
of P, one can evaluate the polynomial P at ¢ = «, and obtain a polynomial
P, € Q[X], hence a Galois group G,,.

We will see that the Galois groups of these specialized equations are, in a
quite natural way, subgroups of the group G.

Definition 5.8.1. A place of the field K is a map ¢: K — kU {oco}, where
k is a field, which satisfies the following properties:

a) if p(x) and p(y) are not both oo, then p(z+y) = o(x) +¢(y), with the
convention a + 0o = oo for a € k;

b) if {¢(x), v(y)} # {0,000}, then o(xy) = p(x)p(y), with the convention
aco = oo for a # 0.

Ezxample 5.8.2. Let us go back to the two previous examples.

a) Let p be a prime number. Let z = a/b be a rational number, written in
smallest terms. If p divides b, let us set ¢, (z) = co. If p does not divide b, let
¢p(z) be the quotient in Z/pZ of the classes of @ and b modulo p. This map
vp: Q — (Z/pZ) U {oo} is a place.

b) Let a € Q. A rational function has a “value” at «, which is set to co if
a is a pole. This map ¢4: Q(t) — QU {cc} is a place.

If : K — kU {oco} is a place, let A = ¢~ !(K) be the set of x € K such
that ¢(x) # oo. The definition of a place implies at once that A is a subring
of K, which we will call the valuation ring of p. (Exercise: check it! See also
Exercise 5.15.) In the two examples above, any ideal in A is generated by a
power of p, or of X — «, accordingly. In particular, in these two cases, the
ring A is a principal ideal ring.
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Let us fix a place ¢: K — kU {oco} of the field K. Let A denote the
valuation ring of . Let P € K[X] be a monic polynomial of degree n. Assume
that P € A[X], and that its discriminant A € A satisfies ¢(A) # 0, so that
the polynomial ¢(P) € k[X] is separable. Let G be the Galois group of a
splitting extension L of P over K, and let H be the Galois group of a splitting
extension £ of the polynomial ¢(P) over k.

Lemma 5.8.3. The polynomial Zp belongs to A[T,Y], and Z,py = ¢(%p).
Proof. Let us first consider the polynomial
n
R = H (T - (Z Xo(i)Yi))'
ceS,, i=1

We view it as a polynomial in T, Y7, ..., Y,, with coeflicients in Z[ X7, ..., X,],

writing
R= Y Ri(Xy,...,Xp,)Yovy . v
I=(i0,...,in)
The polynomial R is symmetric in Xi,...,X,, hence each of its coeffi-

cients Ry is symmetric too. Therefore, there is for each I a polynomial
R € Z[S,,...,Sy] such that

RI(Xlwvan) = RI(SI(X)vusn(X))

Let us write P = X" +a; X" ! +--- 4+ a, and let z4,...,z, denote the
roots of P in L, so that a; = (—=1)7S;(x1,...,2,). It follows that

Rp = Ri(—ay,...,(—1)"an)TY .. Y.
I

Since the coefficients a; belong to the subring A, Zp € A[T,Y].
Moreover, one has p(P) = X™ + p(a;) X" 1 + - + p(a,), and the same
argument shows that

Ryp) = Z Ri(—¢p(ar),...,(—=1)"p(an))TOY* ... Y,
I

Consequently,

(Rp) = Z<P(R1(—a1, o (D) an) TV LY = Ry
I

is the polynomial attached to ¢(P), which proves the lemma. O

Lemma 5.8.4. For any numbering v of the roots of P in L, the polyno-
mial Zp,, belongs to A[T,Y].
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Proof. If the ring A is a unique factorization domain, e.g. , in the two exam-
ples above, it follows from Theorem 2.4.7 that the polynomial Zp, belongs
to A[T,Y]. That remains true in the general case, for “a valuation ring is
integrally closed,” but we shall not prove it here; see Exercise 5.16. O

We saw that the irreducible factors in k[T, Y] of the polynomial Z,p)
were of the form %, py , for u a numbering of the roots of ¢(P) in £. Now,
since Zp,,, divides Zp, the preceding lemmas show that ¢(Zp,) is a divisor
of Z,(py in k[T, Y]. We shall say that a numbering v of the roots of P and a
numbering p of the roots of p(P) are compatible if Z,py,,, divides p(Zp,,).

Theorem 5.8.5. Fiz a numbering v of the roots of P, hence an embedding
Av: Gal(L/K) — &, of image G,,.

a) There exists a numbering p of the roots of p(P) which is compatible
with v. It defines an embedding of the Galois group H into &,; its image H,
is a subgroup of G, .

b) Let p' be any numbering of the roots of ¢(P), and let o be the unique
permutation € &,, such that p'(i) = u(o(i)) for any i € {1,...,n}. Then u/'
is compatible with v if and only if o € G,. In that case, H, = o 'H,o is
conjugate to H,, in G,.

This shows that “the” Galois group H of the specialized equation ¢(P) is in
an almost natural way a subgroup of the Galois group G of the equation P.
Moreover, if the group G is abelian, or if the group H appears to be normal
in G, then the Galois group of the specialized equation is a canonical subgroup
of the Galois group.

Proof. The irreducible factors of the polynomial ¢(%Zp,) € k[T,Y] divide
X, (p), hence are of the form Z,py , for some numberings ;1 of the roots
of ¢(P) in £. These numberings are precisely those which are compatible
with v.

More precisely, with N denoting the set of numberings of the roots of p(P)
which are compatible with v, one has the formula

o(%py) = [[ (T = ()Y1 + - + u(n)Yn))
pneEN

in 4[T,Y]. Let 0 € G,; then
‘%P,V(T7 YU(1)7 ceey Ya‘(n)) = e@13,11(117 Y17 e 7Yn)7
hence, taking the images of both sides by ¢,

H (T - (/J“(l)yo(l) +--+ ﬂ(n)Ya(n))) = H (T - (N(l)yl +- 4+ :u’(n)yn))
HEN HEN
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Writing (i) = po o~ t(o(i)), we find that No~! = N; in other words, N =
NG, is a right coset modulo GG,. Since the cardinality of N is that of GG, one
has N = uG), for any p € N.

Fix such a . The polynomial Z,p),,, divides ¢(Rp,, ). Looking in ([T, Y],
one sees that uH, C N = uG,. Consequently, H, C G,,.

If 14/ is another numbering, one has /' = poo for some o € &,,. Moreover,
i/ is compatible with v if and only if i/ € N, hence if and only if o € G,,.
For such a numbering ', we saw that H, = JleuU. The subgroups H,
and H,, are therefore conjugate in G, . a

Let me now show some examples of how this theorem can be used to specify
the shape of the Galois group of a polynomial with rational coefficients. Recall
a remark from the end of Section 3.5 on finite fields. We define the shape of a
permutation of {1,...,n} as the partition of n that it defines (see p. 93).

Lemma 5.8.6. Let P be a monic separable polynomial with coefficients in a
finite field k. Let us denote by n1,...,n, the degrees of the irreducible factors
of P in k[X]. Let k — ¢ be a splitting extension of P; the Frobenius auto-
morphism F € Gal(¢/k) induces a permutation of the roots of P in (. This
permutation has shape (n1,...,n.).

Recall also from Prop. 4.6.1 that the conjugacy class of this permutation
is characterized by these integers (ni,...,n,). Consequently, this lemma and
Theorem 5.8.5 allow one to exhibit conjugacy classes of elements in the Galois
group. In some cases, this is even enough to compute the Galois group!

Ezample 5.8.7. Let us begin with the polynomial P = X®— X —1. Denote by G
its Galois group over Q, considered as a subgroup of the group of permutations
of the 5 roots, identified with &5.

Reducing the polynomial modulo 2, we see that it has no root in Fs, but
it has two in Fy4. Indeed, the g.c.d. of X° — X — 1 and X* — X is equal to
X2? — X — 1 over Fy, so that P (mod 2) has a factor of degree 2, the other
being necessarily of degree 3. In particular, P (mod 2) is separable over Fy
and its Galois group over Fy is generated by an element of &5 of shape (2, 3).
By Theorem 5.8.5, G contains a permutation of this shape, hence its cube,
which is a transposition.

Let us now reduce modulo 3. By computing the g.c.d. of P (mod 3) and
X% — X, resp. X° — X (computer algebra systems can be of great use in
such calculations...), we check that P (mod 3) has no root in F3, nor in Fy.
(Ezercise: do it also by hand, using, for example, the fact that for any ele-
ment z € Fg, one has z* € {0,41}.) It follows that P (mod 3) is irreducible
over F3. By Theorem 5.8.5, G contains a 5-cycle. Incidentally, this shows that
the polynomial P is irreducible.
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It now follows from Proposition 4.6.2 that G is equal to the full symmetric
group G5. By the way, this gives an explicit example of a polynomial with
rational coefficients which cannot be solved by radicals, for its Galois group,
being G35, is not solvable.

Ezxample 5.8.8. Let us show in a similar way that the Galois group G of the
polynomial P = X°420X —16 over Q, viewed as a subgroup of &5, is equal to
the alternating group 2s. Modulo 2, one has P = X, which is not separable.
Let us thus look modulo 3. One has P = X°— X —1 (mod 3); as we saw in the
previous example, P (mod 3) is irreducible. As above, the group G contains
a b-cycle.

Modulo 7, one has P = X® — X — 2 and its roots in F7 are 2 and 3;
moreover, one has

P=(X-2)(X -3)(X*—-2X?-2X +2)  (mod 7).

The polynomial X3 — 2X2 — 2X + 2 has no root in F; (check it!), hence is
irreducible since its degree is 3. It follows that G contains a 3-cycle.

Modulo 23, one gets a factorization of P as the product of a linear factor
and two polynomials of degree 2, hence there is a permutation of the form
(1)(2,3)(4,5) — a double transposition — in G.

Considering other prime numbers does not seem to give new information
on G. We already know that the order of G is a multiple of 2, 3 and 5, hence of
their L.c.m. 60, and since it is a subgroup of &3, its order divides by 5! = 120.

We now have to use another piece of information. Observe that the dis-
criminant of P is equal to

55 x (—16)* +4* x 20° = 1024000000 = 216 56 = (28 5%)2

(see Exercise 3.22), so is a square in Q. By Proposition 3.4.2, this implies
that G is a subgroup of 5. Since card 25 = 60, one necessarily has G = Us.

In more complicated examples, these two ingredients, reduction modulo
prime numbers and the consideration of the discriminant, are not enough and
one is forced to use more general resolvent polynomials (see Section 3.4).

Ezample 5.8.9. Computer algebra systems like MAGMA, PARI/GP or MAPLE
can compute Galois groups for you, at least if the degree is not too big. For
instance, here is the output of a (verbose) MAPLE session when asked to
compute the Galois group of the polynomial > — 5¢ + 12 over the rationals.

> infolevel[galois] :=2;
> galois(t~5-5*t+12);
galois: Computing the Galois group of t75-5%t+12
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galois/absres: 64000000 = ‘‘(8000)"2

galois/absres: Possible groups: {"5T2", "BT1", "5T4"}
galois/absres: p=3 gives shape 2, 2, 1
galois/absres: Removing {"5T1"}

galois/absres: Possible groups left: {"5T2", "5T4"}

galois/absres: p=7 gives shape 5
galois/absres: p = 11 gives shape 5
galois/absres: p = 13 gives shape 5
galois/absres: p = 17 gives shape 2, 2, 1
galois/absres: p =19 gives shape 5
galois/absres: p = 23 gives shape 5
galois/absres: p =29 gives shape 2, 2,
galois/absres: p =31 gives shape 2, 2,
galois/absres: p = 37 gives shape 5
galois/absres: p = 41 gives shape 5

galois/absres: The Galois group is probably one of  {"5T2"}
galois/respol: Using the orbit-length partition of 2-sets.
galois/respol: Calculating a resolvent polynomial...
galois/respol: Factoring the resolvent polynomial...
galois/respol: Orbit-length partition is 5, 5
galois/respol: Removing  {"5T4"}
galois/respol: Possible groups left:  {"5T2"}
"5T2", {"56:2", "D(5)"}, "+", 10, {"(1 4)(2 3)", "(1 2 3 4 5)"}

To understand these lines, one needs to know that, up to conjugacy, there
are only 5 transitive subgroups of G5. These are

a) the cyclic group Cs, generated by the 5-cycle (1,2,3,4,5), isomorphic
to Z/5Z and denoted in this context as 5T1;

b) the dihedral group Ds, generated by (1,2,3,4,5) and (2,5)(3,4), de-
noted as 5T2;

¢) the metacyclic group May, defined as the normalizer 5T3 of C5 in &5,
of cardinality 20, also isomorphic to the group of all maps F5 — Fj5 of the
form x — az + b with a € F§ and b € Fs;

d) the alternating group s, of cardinality 60 and denoted 5T4;

e) the full symmetric group &5, denoted 5T5.

(In fact, all practical algorithms for computing Galois groups require the list
of all transitive subgroups of &,,, which is known up to n = 31. The notations
BT1, etc. come from this classification.)

First, the discriminant is computed. It is a square, (64, 000,000 = (8000)2),
hence the group must be a subgroup of the alternating group, which ex-
cludes Myy and S5 (respectively 5T3 and 5T5). Then, the program reduces
our polynomial modulo small prime numbers and computes its factorization
over the corresponding finite field, hence the shape of some permutation be-
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longing to the Galois group; then, for any group which has not yet been
excluded, the program simply checks whether it contains such a permutation.
In fact, all nontrivial elements of the group generated by a 5-cycle are 5-cycles
themselves, so that the group Cs (5T1) is eliminated at once by reducing mod-
ulo p = 3. However, no new information is obtained in this way by reducing
modulo prime numbers < 41.

Then, MAPLE indicates that the group would probably be equal to Ds
(5T2). Indeed, by Chebotarév’s density theorem, a profound and difficult the-
orem from algebraic number theory, all possible conjugacy classes of elements
in the Galois group will appear by reducing modulo larger and larger prime
numbers, and they will appear “in proportion” to their cardinalities. In fact,
the shape of a permutation detects only its conjugacy class in the symmetric
group, so that an easier result, due to Frobenius, is sufficient for our purposes.
The number of permutations of a given shape in each group is given in Ta-
ble 5.1. In our example, the shapes that appear are (2,2), 4 times, and (5),
7 times. If the group had been 25 (5T4), the shape (3) would probably have
already appeared, therefore MAPLE suggests that the group is Ds.

Cs (5T1) Ds (5T2) Moo (5T3) 25 (5T4) G5 (5T5)

L1111 1 1 1 1 1
2,1,1,1 10
3,1,1 20 20
2,21 5 5 15 15
4,1 10 30
3,2 20
5 4 4 4 24 24
total 5 10 20 60 120

Table 5.1. Number of permutations inducing a given partition in subgroups of &5

Since Ds is a subgroup of s, it remains to check whether G is, up to
conjugacy, a subgroup of Ds. This requires a resolvent polynomial like

X1 Xo + Xo X3+ X3 Xy + Xy X5 + X5X4,

whose stabilizer is exactly Ds. (Can you see why? Remember that Dj is
the symmetry group of the regular pentagon.) Computing the complex roots
of the polynomial #® — 5t + 12 with large accuracy, one can evaluate the
above resolvent polynomial at all permutations of the roots. Some of these
evaluations are integers and Prop. 3.4.5 implies that the Galois group is equal
to Ds. In fact, a floating point calculation does not really prove that the
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numbers obtained are integers, only that they are up to the given precision.
However, using results such as Liouville’s theorem (Exercise 1.2), one can
prove that the numbers obtained are actually integers.

5.9 Hilbert’s irreducibility theorem

This section explains some facts concerning the variation of the Galois group
of a polynomial equation depending on a parameter. Any of the three theorems
below constitute what is generally known as Hilbert’s irreducibility theorem.

Let us consider a monic polynomial P with coefficients in the field Q(T')
of rational functions. Let us assume that P is irreducible as a polynomial
in Q(T)[X]. We will first show that for “many” values t € Z, the polynomial
P(t, X) € Q[X] has no root in Q. We will then show that in fact, for “many”
integers t, the polynomial P(t,X) is even irreducible. Recall from Theo-
rem 5.8.5 that, essentially, the Galois group over Q of the polynomial P(¢, X)
is a subgroup of the Galois group over Q(T') of the polynomial P(T, X). The
last result, Theorem 5.9.7, claims that for “many” integers ¢, these two groups
are in fact equal!

This is a theorem in arithmetic, as opposed to algebra, and it relies on
properties of the field Q of rational numbers. It is obviously false if one
replaces Q(T) by C(T) in its statement: there are irreducible polynomi-
als P € C(T)[X] of any degree but for any ¢, the polynomial P(¢,X) is
split in C, for the field of complex numbers is algebraically closed. The Galois
group of the specialized equation is therefore trivial.

The heart of the arithmetic arguments will be in the proof of Prop. 5.9.1,
at the point when we bound from below by 1 the absolute value of a nonzero
integer. Remark that such a lower bound was also the crucial point in the
proof that e and 7 are transcendental numbers (Theorems 1.6.3 and 1.6.6).
However, the arguments we will use to prove Theorems 5.9.4, 5.9.6 and 5.9.7
from that proposition are essentially of algebraic nature.

Proposition 5.9.1. Let e be any positive integer and let o = > ap,u~"/¢

n=—ng

¢ which is not a polynomial in u. (In

be a Laurent series in the variable u="/
other words, there is a nonzero coefficient a,, such that either n > 0 or e does
not divide n.) Assume that p(u) converges for |u| > By. Denote by N(B) the
number of integers u € [By, B] such that ¢(u) € Z. Then, there exists a real
number oo < 1 such that N(B)/B* remains bounded when B — co.

From now on, we shall use the big-O notation and write N(B) = O(B%) to
mean that N(B)/B® remains bounded when B — oco.
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Proof. 1t suffices to separately consider the real and imaginary parts of ¢, for
at least one of them is not a polynomial. We will therefore assume that ¢
has real coefficients. Observe that ¢ defines a ¥*° function from the interval
(Bg,+0) to R, its derivatives of any order being obtained by deriving the
series term by term. Hence, for m > ng/e, (™ (u) decreases to 0 when u —
+00 Since ¢ is not a polynomial, ¢(™) is not the zero-function and, when u —
00, (™) (u) is then equivalent to its first term, which is of the form cu™* for
some real number ¢ # 0 and some positive real number u. In particular, for u
large enough, say u > Bj, one has an inequality ciu " < ’gp(m)(u)| < cou™H.

Let S denote the set of integers > By such that ¢(u) € Z. Consider
m + 1 elements in S, ug < -+ < Uy, with ug > B; and let us introduce the
determinant

1 ... 1
Uy ... Um
D=
ug™t o um
o(uo) - .. p(um)

This determinant is an integer, for it is the determinant of a matrix with
integer coefficients. By Lemma 5.9.3 below, there exists a real number £ €
(ug, U ) such that
1
D= () [J(wi — wy).
1>]

Since ug = By, ©™(£) # 0; in particular D # 0. Since D is an integer, one
has |D| > 1, hence a lower bound

m! m!
) 3 e > g,
g(u U]) |¢(m)(€)| CQE

and, a fortiori,
m!
(Um _ uO)m(m+1)/2 > 7“‘8
C2
We thus have shown the existence of positive real numbers b and 3 such that,

for any m + 1 elements ug < -+ < Uy, in S with ug > Bj, one has
Uy = g + bu. (5.9.2)

Now we set @« = 1/(1 + 3) and we split the interval [By, B] as
[Bo, B*] U [B®, B]. The interval [By, B*] contains at most B* elements of S.
For B large enough, B* > B; and the lower bound (5.9.2) implies that the
interval [B®, B] contains at most (m/b)B'=* = (m/b)B® elements of S.
Finally, for B > B%/a, N(B) < (14 m/b)B®, as we had to prove. O
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Lemma 5.9.3. Let I be an interval in R, and f: I — R a function with €"-
reqularity. Let xq,...,x, be elements in I. Then, there is £ € I such that

1 ... 1
xg_l ezt >J
flzo) ... flzn)

Proof. 1t suffices to consider the case where all x; are distinct. Let us con-
sider zg as a parameter and denote by D(xg) the determinant above For A €

R, let F4: I — R be the function defined by Fa(z) = D(z) — A H(:v — ;).

This function F4 vanishes at x1,...,2,; let us choose A so that 1t vanishes
at * = z¢ too.

By Rolle’s Lemma, the derivative of F4 vanishes at n distinct points on I,
then its second derivative (n — 1) times, and so on. Finally, there is at least
one £ € I such that F[&n) (&) = 0. Moreover,

0 1 1
o [ )
F{U(©) =DM —nt=| LA
0 ap . art
FU©) fl@) ... flan)
1 ... 1
o Ty
S ARIGI - An
:L_’;L'fl ‘,L,';zl.—l
(n)
hence A = (—1)"f |(€) (i — ;) and
n i>j>1
n (n)
D(wo) = A (w0 — i) = / n'(g) [T — ;).
i=1 Ti>j
This proves the lemma. O

Theorem 5.9.4. Let P be a monic polynomial in Q(T)[X]. Let N(B) denote
the number of integers t € [0, B] such that P(t,X) has a root in Q. If P has
no root in Q(T'), then there is a real number o < 1 such that, when B — oo,
N(B) =0(B").
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Lemma 5.9.5. Let n denote the degree of P. There exist an integer e > 1,
Laurent series x1,...,xT, with complex coefficients, and a nonzero radius of
convergence, such that for any complex number t of large enough modulus,
the n complex roots of P(t¢, X) are the x;(1/t), for 1 < j < n.

Proof. Since we look at the roots of P(t, X) for ¢ large, let us make a change of
variables t = 1/u. Let R denote a common denominator to the coefficients of
the polynomial P(1/U, X) € Q(U)[X], so that R(U)P(1/U,X) € Q[U, X].
Multiplying by R(U)"~!, we can then find a polynomial Q@ € Q[U,Y],
monic and of degree n with respect to Y, such that P(1/U, X)R(U)" =
Q(U,R(U)X). By Puiseux’s theorem (Theorem 2.6.1), there are power se-
ries y1,...,Yn with positive radius of convergence, and an integer e > 1 such
that, for |u| small enough, the roots of the polynomial Q(u®,Y") are the y;(u),
for 1 < j < n. Let us set x;(u) = R(u) °y;(u). Expanding R(u)~ ¢ as a Lau-
rent series around v = 0, one sees that the x; are Laurent series, converging
for |u| small enough, but u # 0. Making the change of variables t = 1/u again,
the x;(1/t) are the roots of P(t¢, X) provided [¢| is large enough. O

Proof of Theorem 5.9.4. Let D € Z[T] be a common denominator of the
coefficients of P, so that P(T,X)D(T) € Z[T,X]. There is a polynomial
Q € Z[T,X], monic as a polynomial in X, such that P(T,X)D(T)" =
Q(T,D(T)X). The polynomial @ has no root in Q(7T") (if R(T) were a root
of @ in Q(T), then R(T)/D(T) would be a root of P in Q(T)). Similarly,
if D(t) # 0, then the polynomial P(¢t,X) € Z[X] has a root in Q if and
only if Q(¢,X) has a root in Q. Therefore, it suffices to prove the theorem
for the polynomial @, which allows us to assume that P € Z[T, X]. Then,
for any ¢t € Z, the polynomial P(¢, X) is monic with integer coefficients. By
Exercise 1.5, its roots in Q are necessarily integers.

Let x1,...,x, be the series given by Lemma 5.9.5. Since P has no root
in Q(T), none of these series is a polynomial. It is now enough to apply
Proposition 5.9.1 to each of them and to add up the upper bounds obtained,
so that we get the desired upper bound for N(B). O

Theorem 5.9.6. Let P € Q(T)[X] be any monic irreducible polynomial with
coefficients in Q(T'). Let N(B) denote the cardinality of the set of integers t €
[0, B] such that t is not a pole of any coefficient of P and such that P(t, X)
is reducible in Q[X]. Then there exists o < 1 such that N(B) = O(B®).

Proof. As in the proof of the preceding theorem, we assume that P belongs
to Z[T, X]. Let x1,...,x, be the Laurent series given by Lemma 5.9.5. If ¢ is
large enough, say t > By, any monic factor of P(t, X) € Z[X] has the form

Pr(t) = [ [(X —a;(t7)),

el
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where I is asubset of {1,...,n}. If I # @ and I # {1,...,n}, it is thus enough
to show that the set of all integers t € [By, B] such that Py(¢) belongs to Z[X]
has cardinality O(B®).

But we may view the polynomial P; as a polynomial with coefficients in the
field K of converging Laurent series in a variable T~/¢, and P is a factor of P
in K[X]. Since P is irreducible in Q[T, X], the polynomial P; does not belong
to Q(T)[X] and at least one of its coefficients, say ¢y, is not a polynomial
in T'. Proposition 5.9.1 then implies that the set of all integers ¢ € [By, B] such
that ¢;(t) is an integer has cardinality O(B®) for some o < 1. The theorem
is then proved. O

More generally, the following theorem says that the Galois group over Q
of the polynomial P(¢, X), with ¢t € Z, quite often coincides with the Galois
group over Q(T') of the polynomial P(T, X).

Theorem 5.9.7. Let P € Q(T)[X] be a monic polynomial with coefficients
in Q(T). Let G denote its Galois group over Q(T). Let N(B) be the cardinality
of the set of all integers t € [0, B] such that either t is a pole of P(T,X) or
the Galois group of the polynomial P(t, X) over Q is not isomorphic to G.
Then, there exists o < 1 such that N(B) = O(B%).

Proof. As in the proof of Theorem 5.9.7, we assume that the coefficients of P
are polynomials in 7. Let us denote by n the degree of P in the variable X.
Let Q(T) — K be a splitting extension of the polynomial P and let k € K
be any primitive element. If N = card G, then N = [K : Q(T')], and N is the
degree of the minimal polynomial @ of k over Q(T'). The coefficients of Q) are
a priori rational functions in T. However, denoting by D € Q[T] a common
denominator of its coefficients, the minimal polynomial of D(T)x is equal to
the polynomial D(T)NQ(T, D(T)~!X) and therefore belongs to Q[T', X]. This
allows us to assume that Q € Q[T, X].

Over Q(T), the polynomials P and @ have a common splitting extension,
hence have the same Galois group, even if, as permutation groups, they look
distinct (they do not act on the same set).

By the following lemma, there is a finite subset S C Q such that for any t ¢
S, the polynomials Q(t,X) and P(t, X) are separable and have a common
splitting extension Q C K;. By Theorem 5.8.5, the Galois group Gal(K;/Q)
can be considered as a subgroup of the Galois group Gal(K/Q(T)), so that
[K:: Q] < [K: Q(T)] = N. By Theorem 5.9.6 applied to the polynomial @,
there exists @ < 1 such that the number N(B) of all integers ¢ € [0, B] such
that ¢ ¢ S and such that Q(¢, X) is irreducible in Q[X], satisfies N(B) =
O(B®).Forsucht, [K;: Q] > N,sothat one has [K; : Q] = N and Gal(K;/Q)
is isomorphic to Gal(K/Q(T)). O
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Lemma 5.9.8. Let P € Q(T)[X] be a monic polynomial, let Q(T) C K be
a splitting extension of P. Let y € K be a primitive element and denote by
Q € Q(T)[X] its minimal polynomial. There exists a finite subset X C Q such
that for any t ¢ X, the polynomials Q(t,X) and P(t,X) are separable and
have a common splitting extension.

Proof. Let us denote by x1,...,z, the roots of P in K. One can find polyno-
mials A; € Q(T)[Y] such that for any 4, x; = A4;(y), in other words,

n

P(T.X) = [J(X — A(T.y)).
i=1
Replacing y by a formal variable Y, this implies that Q(7,Y) divides the
coefficients of the polynomial

P(TaX) - ﬁ(X - Az(Ta Y))a

i=1

for these coefficients vanish at y and @ is the minimal polynomial of y. There-
fore, there is a polynomial R € Q(T)[X, Y] such that

P(T,X) = [[(X = A(T,Y)) + R(T, X,Y)Q(T,Y). (5.9.9)

i=1

Similarly, there exists a polynomial B € Q(T)[Xy,...,X,] such that y =
B(T,z1,...,z,) and, again, Q(T,Y") divides the coefficients of the polynomial
Y — B(T, A1(Y), ..., An(Y)), hence there is a polynomial S € Q(T)[Y] such
that

Y = B(T, A\(T,Y),..., An(T,Y)) + S(T,Y)Q(T,Y). (5.9.10)

Finally, the polynomial @ is split in K. We thus can find polynomials C; €

Q(T)[Y] satistying
N

QT X) = [[(X - ci(T.y)).

i=1
As before, it follows that there is a polynomial U € Q(T)[X, Y] such that

N
QT X) =[[(X - Ci(T.Y)) + U(T, X, Y)Q(T.Y). (5.9.11)
i=1
The coefficients of the polynomials P, @, A;,...,4,,B,C1,...,Cn,R,S
belong to Q(T'). Let X denote the set of all ¢ € Q such that either ¢ is a pole
of one of these coefficients, or such that the discriminant of P or () vanishes
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at t. By assumption, for any ¢ ¢ X, the polynomials P(¢, X) and Q(t, X) are
separable and the preceding relations hold when evaluated at T' = t.
Let t € Q\ X. To prove the lemma, it now suffices to show that the poly-
nomial P(t, X) is split in any extension where Q(t, X) is split, and conversely.
Thus let L be an a extension of Q in which Q(t, X) has a root n. For any i €
{1,...,n}, let us set & = A;(t,n). Relation (5.9.9) shows that P(¢,X) =

n
(X —¢&;), hence P(t, X) is split in L.

S

' Conversely, let L be any extension of Q in which P(¢, X) is split. Denote
its roots by &1,...,&,. Let i be a root of Q(t, X) in some extension L’ of L.
The roots of P in L’ are then given by the A;(t, n), for 1 <4 < n, so that there
is a permutation o € &,, with A;(t,1) = &,(;) for all 4. The relation (5.9.10)
implies that

n =Bt ), em)

It follows that n € L and that Q(¢, X') has a root in L.

N
Now, relation (5.9.11) implies that Q(¢t,X) = [[(X — C;(¢,n)) is split
i=1
in L. Z O
Exercises

Exercise 5.1. a) Let G be a finite group and let H be a subgroup of G such
that (G : H) = 2. Show that H is normal in G.

b) How does this relate to Lemma 5.1.37

c) More generally, if (G : H) is equal to the smallest prime number dividing card G,
show that H is normal in G.

Exercise 5.2. Let K C E and K C F be two finite extensions with coprime degrees,
contained in a common extension {2 of K. Show that EN F = K and that [EF :
K| =[FE: K]|[F: K].

Exercise 5.3. Let a and 8 be two distinct complex roots of the polynomial X3 — 2.
Let £ = Q(a), F = Q(P).

a) Show that the composite extension Q C EF is a splitting extension of the
polynomial X3 — 2 over Q.

b) Show that ENF = Q, although [EF : Q] # [F : Q] [E : Q]. (This shows that
one cannot remove the hypothesis that one of the extensions E or F' is Galois in
Corollary 5.3.3.)

Exercise 5.4. This is a sequel to Exercise 1.13, where we showed that the two real
roots of the polynomial P = X% — X — 1 cannot be both constructible with ruler
and compass.
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a) Show that in fact no root of P is constructible with ruler and compass.

b) What is the Galois group of the extension generated by the complex roots of P?

Exercise 5.5. Let p be a prime number and let P € Q[X] be any irreducible poly-
nomial of degree p which has 2 conjugate complex roots, x1, z2, and p— 2 real roots,
Z3, ..., Tp. Let us denote by K = Q(z1,...,zp) the subfield of C generated by the
roots of P. We identify Gal(K/Q) with a subgroup of &,.

a) Show that the transposition 7 = (1, 2) belongs to Gal(K/Q). (Think about the
complex conjugation.)

b) Show that Gal(K/Q) contains a p-cycle o.
c) Show that o and 7 generate G,. Conclude that Gal(K/Q) = &,.

d) Application: P = X% —6X+3. (To prove that P is irreducible, use Exercise 1.10
or reduce mod 5.)

Exercise 5.6 (Artin-Schreier’s theory). Let p be a prime number. Let K be
a field of characteristic p and let a € K. We assume that the polynomial P =
X? — X —a has no root in K. Let K C L be any splitting extension of P.

a) If z is aroot of P in L, show that the roots of P are z, z+1,z+2, ..., z+p—1.
In particular, P is separable.

b) Show that P is irreducible in K[X]. (If a degree d polynomial @ divides P, look
at the term of degree d — 1 in Q.)

c) (Another proof that P is irreducible.) Let z + u (for 1 < u < p) be another
root of the minimal polynomial of z over K. Show that there is 7 € Gal(L/K) with
7(z) =  + u. Deduce from this that there is some o € Gal(L/K) such that o(z) =

x + 1, hence that all roots of P are conjugates of z. Conclude.

d) Show that L = K|[z] and that Gal(L/K) ~ Z/pZ.

Exercise 5.7 (Cyclic extensions of degree p in characteristic p). Let K be a
field of characteristic p > 0, and let K C L be a finite Galois extension with Galois
group Z/pZ. Let o be a generator of Gal(L/K).

p—1

a) Show the existence of ¢ € L such that 3 o'(t) = 1.
i=0
p—1
Then, set z = > i0'(¢).
i=0

b) Compute o(z). Show that z ¢ K but that a = 2P — z belongs to K.

c) Show that L = KJz] and that X? — X — a is the minimal polynomial of x
over K.

Exercise 5.8. In this exercise, we will determine the Galois group over Q of the
polynomial P = X7 — X — 1, using reduction modulo primes.

a) Show that P has no root in the finite field Fs. Deduce that it is irreducible,
when viewed as a polynomial over Fa.
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b) Show that the only roots of P in Fg are the roots of the polynomial X2+ X —1,
and that they are simple. Conclude that over F3, P splits as the product of two
irreducible polynomials of degrees 2 and 5.

c) Show that the Galois group of P over the field of rational numbers contains a
7-cycle and a transposition, hence that it is isomorphic to the symmetric group Gr.

Remark. In fact, for any integer n, the Galois group of the polynomial X" — X — 1
over Q is equal to &,. You may try to prove this by analogous methods for small val-
ues of n. If you find the computations too hard, do not hesitate to rely on computer
algebra systems, for they often provide routines to factor polynomials modulo prime
numbers. For example, the answer to the first question is obtained in less than 1 ms
by entering factormod(x~7-x-1,2) in PARI/GP, or Factor(x~7-x-1) mod 2 in
MAPLE.

Exercise 5.9 (Another proof of Theorem 5.4.2). Let K C L be a finite exten-
sion of degree n > 2. Assume that it is Galois and that its Galois group is generated
by o € Gal(L/K). Assume moreover that card p,(K) = n.

a) Show that o: L — L is a morphism of K-vector spaces, and that its eigenvalues
are nth roots of unity.

b) Show that L is the direct sum of the eigenspaces L¢ = {z € L; o(x) = (z}, for
¢ € pn(K).

c) If y € L¢\ {0}, show that the map  — z/y is an injective K-linear map
L¢e — Ly.

d) Show that L; = K and conclude that dimL; = 1 for any ¢ € pn(K). In
particular, if ¢ is any primitive nth root of unity, there is a nonzero element x € L*
such that o(z) = (z.

Exercise 5.10. Let K C E be a splitting extension of an irreducible separable
polynomial P € K[X]. Assume that P has degree n and let x1,...,x, denote the
roots of P in E. One assumes moreover that Gal(E/K) is cyclic; let o be a generator.

a) Show that [E : K] = n.

b) Assume that card un(K) = n. For any nth root of unity ¢( € K, define a
Lagrange’s resolvent by

R(¢) = o1+ Co(an) + -+ "oV (@),

Show that R(1) € K. For any ¢ € pn(K), show that R({)" € K.

c) Show that E is generated by the R(() for ¢ € pun(K).

d) If n is a prime number, show that there is j € {1,...,n — 1} such that F =
K(Y/RQ").

Exercise 5.11. Let K be a field and consider a polynomial P = X™ — a, for some
a € K*. Assume that n is not a multiple of the characteristic of K and observe
that P is separable.
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a) Let L be a splitting extension of K. Show that L contains a primitive nth root
of unity ¢. Let K1 = K(¢) and write , = pn(K1).

If m € Z is prime to n, show that the map uw — u™ is an automorphism of .
Show conversely that any automorphism of p, is of this form. Conclude that there
is an isomorphism (Z/nZ)* ~ Aut(pn).

b) Show that the extensions K C K; and Ky C L are Galois, and that their Galois
groups are naturally subgroups A C (Z/nZ)* and B C p,. (Fix x € L with 2" = a
and look at the action of Gal(L/K) on x and (.)

c) Show that the isomorphism of Question b) restricts to a morphism ¢: A —
Aut(B) and prove that Gal(L/K) is isomorphic to the semi-direct product A x, B.

d) Assume that [K; : K] is prime to n and that P is irreducible over K. Show
that P is still irreducible over K; and that B = py,.

e) Numerical application: K = Q and P = X" — 2. Show that Gal(L/K) has
order 42 and is isomorphic to the group of permutations of Z/7Z of the form n —
an+b for a € (Z/7Z)" and b€ Z/7Z.

Exercise 5.12. This exercise proposes a Galois-theoretic proof of the fundamental
theorem of algebra.

Let R C K be a Galois extension of the field of real numbers containing the field
of complex numbers C. Let G = Gal(K/R) and let P be a 2-Sylow subgroup of G.
Set card P = 2".

a) Using the fact that R has no finite extension of odd degree, show that G = P.
b) Let P; = Gal(K/C). By Lemma 5.1.3, P has a normal series

{i}=P,C---CP.CPCP

with (Pj41 : P;) = 2 for any j. Define K; = K. Show that the extension K; C
K41 is a quadratic extension. Using the fact that any complex number is a square,
show that n = 1, hence K = C.

Exercise 5.13. This exercise will let you prove Theorem 5.1.1 without any group
theory, using instead ideas from the second proof of the fundamental theorem of
algebra.

Let z be any algebraic number, and assume that the degree of the extension of Q
generated by its conjugates z1, ..., z4 is a power of 2.

Observe that d is itself a power of 2. By induction on d, prove as follows that z
is constructible.

a) Fix c € Q, set 2; j,c = zi+2zj+czizj and Q. = [[ (X — zi,j,c). Show that Q. is a
polynomial with rational coefficients, and that the (;égrees of its irreducible factors
are powers of 2. Show that at least one of these degrees divides d/2, hence that there
are ¢ < j such that z; + z; + cz;z; is constructible.

b) Show that there are ¢ and j such that z;+z; and z;z; are constructible. Conclude
that z; and z; are both constructible.

c) Show that z is constructible.
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Exercise 5.14. Let n be an integer, with n > 5. Let K C L be a finite Galois
extension with Galois group &,,.

a) Show that there is only one quadratic extension K C K contained in L. What
is the Galois group of the extension K; C L? (Use Exercise 4.17.)

b) Show that the degree of any x € L\ K is at least n.

Exercise 5.15. Let K be a field, and let ¢: K — kU {co} be a place of K. Recall
that we defined the valuation ring of ¢ as the set A = {z € K ; p(x) # oo}.

a) Show also that for any x € K \ {0}, either x or 1/x belongs to A (this is the
general definition of a valuation ring).

b) Let m = ¢~ '(0). Show that m is an ideal of A and that an element a € A is
invertible in A if and only if a &€ m.

c) Deduce from this that m is the unique maximal ideal in A, that A/m is a field,
and that ¢ induces a field homomorphism A/m — k.

d) In the two examples given in the text (Example 5.8.2), show that the ideal m
is generated by one element 7. Show moreover that any ideal in A is generated by
a power of 7. (In fact, one can set 7 = p in case a) and 7 = X — « in case b).) In
particular, in these two cases, the ring A is a principal ideal ring.

Exercise 5.16. Let K be a field and let A be a subring in K. Fix an algebraic
closure {2 of K. One says that an element x € §2 is integral over A if there is a
monic polynomial P € A[X] such that P(z) = 0.

a) Let z and y be two elements in {2 which are integral over A. Let P and Q € A[X]
be monic polynomials such that P(z) = Q(y) = 0. Factor P and @ in {2 as

n

P=][(X-2) and Q=]][(X—w).

i=1 j=1
Show that the coefficients of the polynomial R = [[(X — x; — y;) belong to A.
%3
(Write R =[] Q(X —x;) and use the theorem on symmetric polynomials.) Conclude
that « + y is integral over A. Similarly, show that zy is integral over A.
b) Show that the set of elements of {2 which are integral over A form a subring
of £2.
c) Assume that A is a valuation ring. Show that an element x € K is integral
over A if and only if © € A. (“A valuation ring is integrally closed.”)
d) Let P and @ be two monic polynomials in K[X]. Assume that P € A[X] and
that @ divides P in K[X]. Show that the coefficients of @ are integral over A.

e) Assuming that A is a valuation ring, conclude that @ € A[X]. (“Gauss’s lemma
for valuation rings.”)
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Algebraic theory of differential equations

In this final chapter, I want to explain how certain aspects of the theory of
linear differential equations with, say, polynomial coefficients, can be viewed in
an algebraic setting. There is in fact a full “Galois theory of differential equa-
tions” of which I try to convey some ideas. I conclude with a theorem due to
Liouville, a particular case of which is the fact that the function [ exp(z?)dx
has no elementary algebraic expression.

6.1 Differential fields

Definition 6.1.1. Let A be a ring. A deriva-
tion on A is a homomorphism of abelian groups
D: A — A which satisfies the Leibniz rule: for
any a and b in A, one has

D(a,b) _ aD(b) + bD(a/). GOTTFRIED WILHELM LEIBNIZ I’s-l_l’;l‘:& fJII'._T\I HLAND
A differential ring is a ring endowed with a derivation. When the ring is a field,
we call it a differential field. One often denotes o’ = D(a), o’ = D(D(a)),

and, for any integer n >0, a(™ = D™ (a).

Ezamples 6.1.2 (Examples of differential rings).

a) The ring of ¥ functions on an interval I C R with, say, complex
values, endowed with the usual derivation of functions, i.e. , we set D(f) to
be the derivative of f.

b) If X is a manifold, a derivation on the ring of smooth functions on X
is also called a wector field on X.

¢) The ring of real analytic functions on an open interval in R, endowed
with the usual derivation.
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d) The ring of holomorphic functions on an open subset of C, endowed
with the derivation f — f’.

e) The ring k[T] of polynomials on one variable T', with coefficients in a
field k, together with the formal derivation P — P’.

f) Any ring A, with the identically zero derivation defined by D(a) = 0
for any a € A (stupid example).

Ezamples 6.1.3 (Examples of differential fields).

a) The field k(T) of rational functions in one variable with coefficients in
a field k, endowed with the formal derivation of rational functions.

b) The field of meromorphic functions on a connected open subset of C,
with the usual derivation.

Differential rings or fields feature the following familiar formulae.

Lemma 6.1.4. Let (A, D) be a differential ring. Let a, b be two elements of A.
a) D(1) =0;
b) for any integer n > 1, D(a") = na"1D(a);

1
1, D™(ab) = pa (Z)Dk(a)D”*k(b);

=
c) for any integer n >

0
d) if b is invertible, then D(a/b) = (bD(a) — aD(b))/b*. In particular,

D(1/b) = —D(b)/b?.
Proof. a) Applying the derivation D to both sides of the equality 1x1 = 1,
one gets 1D(1) + 1D(1) = D(1), hence D(1) = 0. More generally, one has
D(n-1) =0 for any n € Z.

b) Let us prove this by induction on n. The formula is true for n = 1. If
it holds for n, then

D(a"™) = D(a x a™) = aD(a") + a"D(a)
= a(na""'D(a)) + a"D(a),= (n + 1)a"D(a)
hence it holds for n + 1.

¢) Let us again prove this formula by induction on n. It holds for n = 1.
Assuming it holds for n, then

D" (ab) = D(D"(ab)) = D (Z (Z) Dk(a)D”‘k(b)>

k=0

NE

(1)o@ @D o)

k

0

I
M=

(Z) (Dk-i-l(a)Dn—k(b) +Dk(a)Dn+l—k(b))

-
I

0
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by virtue of the classical formula

()= 6)

valid forn > 1 and k > 1.
d) Differentiating the relation b(a/b) = a, one gets

D(b)% +bD(a/b) = D(a),
e D(a) bD(a) — aD(b)
a a a)—a
D(a/t) = == -Db)z = ——3—
as was to be shown. The last relation follows since D(1) = 0. O

An element of a differential ring is said to be constant if its derivative is
zZero.

Proposition 6.1.5. The set of constant elements in a differential ring is a
subring. The set of constant elements in a differential field is a subfield, called
the constant field.

Proof. If a and b are elements of a differential ring (4, D) satisfying D(a)
D(b) = 0, one has D(a+b) = D(a)+D(b) = 0and D(ab) = aD(b)+bD(a) =
Since D(1) = 0, the set of all a € A with D(a) =0 is a subring of A.

If a € A is both constant and invertible, the preceding lemma shows that
D(1/a) = 0, hence 1/a is constant. In particular, if (K, D) is a differential
field, the set KT of all z € K with D(x) = 0 is a subfield of K. O

0.

One often denotes AP, resp. KP the set of constant elements in a differential
ring (A, D), resp. in a differential field (K, D). In all examples above coming
from analysis, the constant elements are the (locally) constant functions. For
polynomials in characteristic p, something funny happens.

endowed

Proposition 6.1.6. Let k be a field. Set A = k[T]| and K = k(T),
=k. If k has

with the usual derivation. If k has characteristic 0, AP = KP
characteristic p > 0, then AP = k[TP] and KP = k(TP?).
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N N

Proof. Let P = Y a,T", then P = > na,T"'. Assume that P’ = 0,
n=0 n=0

hence na, = 0 for any integer n. If k has characteristic zero, this implies

P = ag. However, if the characterstic of k is p > 0, this only implies that
a, = 0 whenever p does not divide n, hence P € K[TP]. The other inclusion
is obvious.

Now look at rational functions and let R € k(T') be such that R’ = 0.
Write R = A/B where A and B are two polynomials, the polynomial B being
# 0 and of minimal degree. It follows that BR = A, and by differentiating
both sides, we obtain B’R = A’. The degree of B’ is smaller than the degree
of B, so the minimality assumption implies that B’ = 0, hence A’ = 0. If k
has characteristic 0, it follows that A and B are constant, hence k(T)?P = k. If
k has characteristic p > 0, A and B are two polynomials in the variable T?, so
R € k(TP). Conversely, such rational functions have a zero derivative, q.e.d.O

6.2 Differential extensions; construction of derivations

Definition 6.2.1. A differential homomorphism f: (A,D4) — (B, Dpg) from
one differential ring to another is a ring homomorphism f: A — B such that
for any a € A, f(Da(a)) = Dp(f(a)).

If A and B are fields, one speaks of differential extension of fields, or
simply of differential extension.

If no confusion about the morphism f: A — B can arise, one also says that
Dpg extends D 4.

Lemma 6.2.2. Let f: (A,D4) — (B,Dpg) be a differential homomorphism
of rings. The kernel of f is stable under D 4.

Indeed, for any a € A with f(a) = 0, one has f(Da(a)) = Dp(f(a)) =
Dp(0) = 0. One says that Ker f is a differential ideal.

Conversely, let I be a differential ideal in (A, D4) and let us show how
the quotient ring B = A/I can be endowed with a canonical structure of
differential ring, such that the ring morphism 7: A — B is a differential
homomorphism. By definition, the morphism of abelian groups

moDjy: A— B

is zero on I. Since I is a subgroup of A and since A is abelian, there is a unique
morphism of abelian groups Dp: B — B such that Dg(n(x)) = 7(Da(x))
for any = € A. Let us now show that Dp is a derivation. Let a and b be two
elements of B; let « and y in A be such that ¢ = 7(z) and b = 7(y). Then,
one has
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Dp(ab) = Dp(r(x)n(y)) = Dp(x(zy))
= m(Da(zy)) by definition of Dg
=7(yDa(x) + 2D (y)) since D4 is a derivation
= 7(y)m(Da(2)) + 7(2)m(Da(y))

since 7 is a ring homomorphism

m(y)Dp(r(2)) + n(z)Dp(r(y))
= bDB(a) + GDB(b)

Theorem 6.2.3. Let (A, D4) be a ring and let I be a differential ideal of A.
Then there exists a unique derivation of the quotient ring A/I such that the
canonical ring morphism A — A/I is a differential homomorphism.

Proposition 6.2.4. Let (A, D) be a differential ring. Assume that A is an in-
tegral domain and let K be its field of fractions. There exists a unique deriva-
tion on K which coincides with D on A.

Consequently, K has a canonical structure of a differential field.

Proof. Keeping in mind the formulae of Section 6.1, one necessarily has to set,
if x € K is the quotient a/b of two elements of A,
D(a)b—aD(b)
D(z) = —

Let us check that this formula does not depend on the choice of the fraction
a/b and that it defines a derivation on K. For any t € A\ {0}, one has

D(at)(bt) — (at)D(bt)  D(a)bt*> + abtD(t) — at>D(b) — atbD(t)

(bt)2 B b2t2

D(a)b— D(b)a

b2 ’

Consequently, the formulae for D(a/b) and D(ad/bd) give the same result, and
similarly, the formulae for D(c/d) and D(bc/bd) give the same result. Since
ad = be, the formulae for D(a/b) and D(c/d) compute the same element of K,
hence the map D: K — K is well-defined.

Moreover, if z = a/b and y = ¢/d, one has

ad + be D(ad + bc)bd — (ad + be) D(bd)
D(z +y) = D( o ) = T

D(ad)bd — adD(bd)  D(be)bd — beD(bd)
b2d2 + b2d2

+ D(Z—;) = D(a/b) + D(c¢/d) = D(x) + D(y).

ad

= D(37)
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It follows that D is a homomorphism of abelian groups. On the other hand,

ac D(ac)bd — acD(bd)

D(zy) = D(w) = h2d2
abdD(c) + bedD(a) — acdD(b) — abeD(d)
B b2d2
bedD(a) — acdD(b)  abdD(c) — abeD(d)
B b242 + b242
bD(a) —aD(b) cd  dD(c) —c¢D(d) ab
=T e 2t 2 »
a.c c.a
= D(E)E + D(E) 7= D(z)y + D(y)x,
which shows that D is a derivation. O

I now explain how to construct all the derivations on a polynomial ring.

Theorem 6.2.5. Let (A, D) be a differential ring and consider the ring A[T)
of polynomials in one variable T with coefficients in A. For any b € A[T], there
is a unique derivation Dy of A[T| with Dy(T) = b such that the canonical ring
morphism A — A[T)] is a differential morphism (A, D) — (A[T], Dy).

Proof. Denote B = A[T] and let P = Y a;,T* be an element of B. If Dp is
k=0
any derivation of B extending D, one has

NE

Dp(P)=Y_Dg(axT*) =Y (D(ar)T* + ax Dp(T*))
k=0

0

ES
S

= iD(ak)Tk + (Z kiakail)DB(T)
k=0

k=0
= PP(T) + Dp(T)P'(T),
where PP denotes the polynomial of A[T] obtained by applying D to the

coefficients of P. This formula shows that such a derivation is determined by
the image Dp(T) of T. Conversely, let A € B and let us show that the formula

Dp(P)=PP(T) + AP'(T) =Y D(ax)T* + XY ka, 7"
k=0 k=0

defines a derivation on B satisfying Dp(T) = X and extending the deriva-
tion D on A. The map Dp is obviously a morphism of abelian groups. If

m
Q = > b, T* is another polynomial, one has
k=0

m—+n

PQ = Z Cka, Cp = Z aibj

k=0 i+i=k
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and
m—+n
Z D Ck Tk+)\ZkaTk L
m—+n o
= > > (D(ai)b; + Dlbj)a;) T
k=0 i+j=k
FADY D (i a7
k=0 i+j=k
S 3 SLINTATESS 9) SRR
i=0 j=0 =0 j=0
159 WELTSY 3 P
1=0 j=0 1=0 5=0
= Dp(P)Q + Dp(Q)P,
which was to be proved. O

A last case, very important in the following discussion, concerns (separa-
ble) algebraic extensions.

Theorem 6.2.6. Let (K, D) be a differential field and let L be a finite sep-
arable algebraic extension of K. Then there exists a unique derivation on L
which extends D.

Proof. The proof is nothing but an abstract algebraic version of the compu-
tation of the derivative of a function defined implicitly.

Let z € L be any primitive element, so that L = K|[z]; denote by P =
X"+ ap_1 X" 1 4.+ qg its minimal polynomial, hence L ~ K[X]/(P). If
Dy, is a derivation of L which extends that of K, one obtains by differentiating
the relation P(z) = 0 that

0= Dp(0) = Dr(P(x))
= Z D(ay)z" + Z karz* 1Dy (2)
k=0 k=0
= PP(z) + P'(z)D ().

(We denoted by PP the polynomial obtained by applying D to the coefficients
of P.) One has deg P’ < deg P and, since P is separable, P’ # 0. Hence
P'(z) # 0, because P is the minimal polynomial of z. Consequently,

Di(x) = —PP(2)/P'(z)
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and there can be at most one derivation on L extending the given deriva-
tion on K. To show that such a derivation actually exists, we will use Theo-
rem 6.2.3. We need to show that there is a derivation on K[X] such that the
ideal (P) is a differential ideal. If D is a derivation of K[X], the preceding
computation shows that

D(P) = PP + P'(X)D(X).
Since P is separable, P and P’ are coprime and there exist polynomials U

and V € K[X] such that UP + VP’ = 1. Then the choice D(X) = —V PP
defines a derivation D on K[X] such that

D(P)=PP —vPPP =(1-VP)PP = (UPP)P.

This is a multiple of P. Consequently, for any A € K[X], D(AP) =
D(A)P + AD(P) € (P) and the ideal (P) is a differential ideal of the differ-

ential ring (K[X], D). The quotient ring L = K[X]/(P) inherits the desired
structure of a differential field. O

6.3 Differential equations

Let (K, D) be a differential field. The differential equations we are interested
in have the form

D"(f) 4 an1 D" N(f) 4+ aof =0,

where ag,...,a,—1 € K, the unknown being f. In other words, we will only
discuss linear homogeneous differential equations. As in calculus, we will say
that the preceding differential equation has order n. Actually, we will rather
consider differential equations in matrix form

Y' =AY, Ae M,(K),

the unknown being a vector Y, written as a column (the derivative of such a
vector is defined by differentiating each coordinate).

As in calculus again, one can turn an equation of the first sort into an
equation of the second one: just introduce the vector Y = (f, f/,..., f=1)t,
One then has

Y= (f, ", f)

= (flaf//a .- 'af(n71)77an—1f(n71) -t aof)t
0O 1 0
0 1

—ap —ai ... —Qp_1
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It could be possible to consider vector-valued differential equations of higher
order. They can be reduced to a first-order differential equation by a similar
procedure.

Theorem 6.3.1. Let (K, D) be a differential field and let C denote its field
of constants. Then the set of solutions Y € K" of a differential equation
Y' = AY, with A € M, (K), is a C-vector space of dimension less than or
equal to n.

Proof. Observe that the derivation D: K — K is C-linear (for a € C and
f € K, D(af) = aD(f) + D(a)f = aD(f)), so that the map ¢: K™ — K"
defined by ¢(Y) =Y’ — AY is C-linear. Its kernel, the set of solutions of the
differential equation Y’ = AY, is therefore a C-vector space, which we denote

by V.
Let us show that its dimension is < n. It suffices to show that n + 1 ele-
ments in V', say Yy, ..., Yy, are linearly dependent over C. They are obviously

dependent over K, since the dimension of K™ as a K-vector space is n. Hence
we are reduced to proving the following lemma. O

Lemma 6.3.2. Let (K, D) be a differential field with field of constants C. Let
Yi,..., Yy be solutions of a differential equation Y' = AY, for A € M, (K).
If they are linearly independent over C, then they are linearly independent
over K.

Proof. Let us show this by induction on m. For m = 1, the hypothesis and the
conclusion both mean that ¥; # 0. Assume that the result holds for (m—1). By
induction, we may assume that Y7,...,Y,,_1 are linearly independent over K.
Let us consider a linear relation a1Y; + -+ a,, Y, =0, for aq,...,a,, € K.
Necessarily, a,, # 0, which allows us to divide this relation by a,,, hence we
assume a,, = 1. Now, let us differentiate this relation, obtaining

(@1 Y1 +arY)) + -+ (a1 Y1+ amY,, 1) +Y,, =0,
that is,
(Y14 +ah, 1 Ym_1)+Ala Y1+ + am-1Ym_1+ Yn) =0,

hence

CL,1Y1 + -+ a;n_lYm_l =0.
This is a linear dependence relation with coefficients in K for Y7,...,Y,,—1. By
hypothesis, it is trivial and @} = --- = a!,_; = 0. In other words, a1, ..., am_1
are constants and Y7, ...,Y,, are linearly dependent over C', a contradiction.O

There is a nice tool in linear algebra to detect the linear independence over
the field of constants C, given by the Wronskian construction.
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Definition 6.3.3. Let (K, D) a differential field. The Wronskian of n ele-
ments fi,..., fn € K is defined as the determinant

fi for oo S
i o
W(fl,...,fn):det . .
fl(n'—l) f(n 1) o T(Ln.—l)
Theorem 6.3.4. Let (K, D) be a differential field. Elements f1,..., fn in K

are linearly dependent over C' if and only if their Wronskian is zero.

Proof. This is a variant of the preceding proof. If f1,..., f, are elements of K
that are linearly dependent over C, one immediately sees that the columns of
the Wronskian matrix satisfy a linear relation, hence W(f1,..., fn) = 0. The
important point is the converse, which we shall prove by induction on n, the
result being clearly true for n = 1. Assume now that W(f1,..., fn) = 0. If
W(fay..., fn) =0, it follows by induction that fs,..., f, are linearly depen-
dent over C. Assume therefore that W (fa,..., f,) # 0. Since W(f1,..., fn) =
0, the columns of the Wronskian matrix satisfy a nontrivial linear dependence
relation with coefficients in K, say

af vaofy) + o tanf =0, 0<j<n-1 (+5)

Since by assumption W (fs, ..., fn) # 0, one has a; # 0 and we may assume,
dividing by a1, that aq = 1. Now differentiating the relations (x;) for 0 < j <
n — 2, one gets

fl(j+1) + ( f(J+1) +a f(j)) o (anfT(Lj+1) + a/nfT(LJ)) — 0’
hence
ayf) + -t al f =0, 0<j<n-2
Were they not trivial, these relations would imply that W(fs,..., f,) = 0.
Consequently, a5 = --- = a), = 0 and the a; are all constants, which shows
that f1,..., f, are linearly dependent over C. a

6.4 Picard-Vessiot extensions

Recall that for any polynomial, we have defined and constructed a splitting
extension as a minimal extension where this polynomial has a full set of roots.
Similarly, we shall now construct a minimal extension of a differential field in
which a nth order differential equation admits n linearly independent solu-
tions.



6.4 Picard-Vessiot extensions 161

In the following, we consider only fields of characteristic zero.

Definition 6.4.1. Let (K, D) be a differential field. Assume that the field C
of constants in K is algebraically closed with characteristic zero. Let
(E): Y’ = AY be a linear homogeneous differential equation, where A is a
n X n matriz with coefficients in K.

One says that a differential extension (L,D) of K is a Picard-Vessiot
extension for this equation if

a) the vector space of solutions of (E) in L™ has dimension n, hence a
basis of solutions (Y1,...,Y,) with coefficients in L;

b) L is generated by the coefficients Y;; of this basis;

c) the field of constants of L is equal to C.

Theorem 6.4.2. Any differential equation admits a Picard- Vessiot extension.
Two such extensions are isomorphic as differential extensions of (K, D).

The proof is quite complicated and we shall only establish the existence
of a Picard-Vessiot extension.

Proof that a Picard-Vessiot extension exists. Since a Picard-Vessiot extension
is generated by the coefficients of a basis of solutions, let us begin by consid-
ering the ring

R=K[Y11,...,Y.]

of polynomials in n? indeterminates. If G denotes the matrix (V;;), let us
endow the ring R with the derivation D: R — R defined by D(G) = AG,
which means that we have added to K a family of solutions to equation (E).
The requirement that the solutions are linearly independent can be rephrased
as the fact that det(G) is invertible. Let us therefore introduce the ring S =
R[T)/(1—T det(Q)), in which T corresponds to the inverse of det(G). We have
to extend the derivation D from R to S. To that aim, we have to define D(T")
so that the ideal generated by 1 — T det(G) becomes a differential ideal. By
Exercice 6.2, the derivative of det(G) is given by

D(det G) = Tr(Com(G)G"),

where Com(G) denotes the comatrix of G (transpose of the matrix of cofac-
tors). Since D(G) = AG, we thus have

D(det G) = Tr(Com(G)AG) = Tr(AG Com(G))
= Tr(Adet(G)) = Tr(A) det(Q).

Consequently, one has
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D(1 — T'det(G)) = —D(T) det(G) + T Tr(A) det(G)
= — det(G)(D(T) — T'Tr(A)).

In other words, the ideal (1 — T det(G)) is a differential ideal as soon as the
derivative of T satisfies D(T') = T Tr(A). Define D(T) by this relation. It
follows that the quotient ring S = K[Y11,..., Yan, T]/(1 — T det(G)) inherits
a derivation such that D(G) = AG.

But we have not yet finished: the differential ring S that we just con-
structed is not a field, and has in general far too many constant elements (see
Exercise 6.4). Therefore, let I be a differential ideal of S, maximal among all
differential ideals of S distinct from S. (A transfinite induction similar to that
of Theorem 2.5.3 shows that there are such ideals.) The quotient ring S/I is
a differential ring and it has no nontrivial differential ideal. By Lemma 6.4.3
below, it is an integral domain and the field of constants of its field of frac-
tions is equal to C. This shows that (L, D) is a Picard-Vessiot extension for
the equation Y’ = AY. a

Lemma 6.4.3. Let (K, D) be a differential field of characteristic zero; let us
denote its field of contstants by C. Consider a morphism of differential rings
(K,D) — (A, D) and assume that A has no differential ideal except (0) and A.
Then the following hold:

a) The ring A is integral. Let us denote by L its field of fractions, endowed
with its natural derivation.

b) The field of constants of L is contained in A.

c) If A is a finitely generated K-algebra and if C is algebraically closed,
then the field of constants of L is equal to C.

Proof. a) Let us begin to show that A contains no nonzero nilpotent elements.
To that aim, let I be the set of all x € I a power of which is zero. This is an
ideal of A (see Exercise 2.10) and we shall show that it is even a differential
ideal. Indeed, let z € I and let n > 1 be any integer such that z" = 0.
Differentiate this relation: one gets na™ 1z’ = 0, hence " 12’ = 0 since K C
A has characteristic 0. We will now prove by induction that for any integer k
with 0 < k < n, one has gc”_k(x’)mC = (0. This is indeed true for £ = 0
and k = 1. Differentiating the relation 2"~ k*1(2")2k=2 for k < n gives

(n —k+ 1>$n—k(x/)2k—1 + 2(]{? _ 1>xn—k+1(x/)2k—3x// =0.
Multiplying by z’, we obtain
(n —k+ 1)xn—k(x/>2k —0.

Since k < n, n —k+ 1 # 0 is invertible in K (using again the hypothesis
that K has characteristic 0) and we find that " ~*(2/)2*. When k = n, one
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gets (2)?" = 0, hence 2’ € I. This completes the proof that I is a differential
ideal. Since 1 is not nilpotent, I # A, and the assumption that A has no
nontrivial differential ideal implies that I = 0.

Let now a be any nonzero element of A and let us prove that a is not
a zero-divisor. Let I be the set of all b € B such that ab = 0. This is an
ideal of A. Moreover, if ab = 0, then one has ab’ + a’b = 0, hence a2V = 0
after multiplying by a. It follows that (ab’)? = 0 and ab’ = 0 since A has no
nonzero nilpotent elements. Consequently ¥ € I and I is a differential ideal.
Since a #0, 1 € I and I = 0. It follows that A is an integral domain.

b) Let us denote by C’ the field of constants of L. It is a subfield of L
containing C. Let z € C’ and let I be the set of all @ € A such that ax € A.
This is an ideal of A. It is even a differential ideal of A. Indeed, if b = ax € A,
then & = ax’ + o’z = a’x € A, hence o’ € I. By definition of the field of
fractions, I # 0, hence I = A. In particular, 1 € I and x = 1l € A.

¢) It follows from b) that C' C A. Let m be any maximal ideal of A.
The quotient ring A/m is a field. By assumption, A is a finitely generated K-
algebra; let 1, ..., x, be elements of A such that A = K{z1,...,2,]. Then the
images in A/m of x1,...,z, generate A/m as a K-algebra, so that A/m is a
finitely generated K-algebra too. By Hilbert’s Nullstellensatz (Theorem 6.8.1),
A/m is an algebraic extension of K. The morphism ¢’ — A — A/m is a
morphism of fields, hence is injective. It follows that C’ is algebraic over K.
By Lemma 6.4.4, C’ is moreover algebraic over the field of constants of K. As
C' is algebraically closed, the inclusion map C' — C’ is an isomorphism and
c'=C. O

Lemma 6.4.4. Let (K,D) — (L, D) a differential homomorphism of differ-
ential fields of characteristic zero. Denote by C the field of constants in K.
Let © € L. The following are equivalent:

a) x is algebraic over C;
b) x is constant and algebraic over K.

Proof. Assume that x is algebraic over C. It is a fortiori algebraic over K;
we have to show that z is constant. Let P = X" 4+ a,,_1 X" 1 + --- + qg
be the minimal polynomial of x over C. Differentiating the relation
2" 4 ap—12" ' + - + a9 = 0, one gets P'(z)z’ = 0. Since K has
characteristic zero, P is separable and P’(z) # 0. Therefore ' = 0.

Assume now that x € L is constant and algebraic over K. Let P =
X"+ ay,_1 X" ' 4.4 aqp its minimal polynomial over K. Let us differentiate
again the relation P(z) = 0. Since 2’ = 0, it follows that nzl ajx® =0, that

k=0
is, PP(z) = 0. Since deg PP < deg P, one has PP =0 and aj, = 0 for any k.
This means that P € C[X], hence z is algebraic over C. O
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6.5 The differential Galois group; examples

Let (K, D) be a differential field. We assume that its field of constants C' is an
algebraically closed field of characteristic zero. Let (L, D) be a Picard-Vessiot
extension of K corresponding to an equation (E): Y’ = AY. Let (Y1,...,Y},)
be a C-basis of the vector space V' of solutions of (E) in L™.

Definition 6.5.1. The differential Galois group of L over K is the group of
differential K-automorphisms of L, that is, the set of automorphisms o: L —
L such that

a) for any x € K, o(x) = x;
b) foranyy € L, o(y) =o(y').
It is denoted Gal®(L/K).

Usual Galois groups are subgroups of a group of permutations; similarly,
the differential Galois group can be viewed as a subgroup of the group GL(V)
of C-linear automorphisms of the vector space of solutions. (Observe that
GL(V) ~ GL,(C).)

Proposition 6.5.2. Let o € GalD(L/K). For any solution Y of the differ-
ential equation (E), o(Y) is again a solution of (E) and the induced map
oly: V —V so obtained is an isomorphism of C-vector spaces.

Moreover, the map p: Gal®(L/K) — GL(V) defined by o — oly is an
injective morphism of groups.

Proof. Let o € Gal”(L/K). Let Y = (y1,...,yn)" be a solution of (E). By
definition, one then has

oY) =0(Y')=0(AY) = Ao (Y),

since o is K-linear. Consequently, o(Y') is a solution of (E). This defines a
map oly: V — V, which is obviously C-linear since C' C K. Moreover, oy is
bijective, for its inverse is given by the restriction of c=! to V.

It is obvious that the map p: ¢ +— o]y is a morphism of groups
from Gal?(L/K) to GL(V). It remains to show injectivity. Con-
sider ¢ € Gal”?(L/K) with p(c) = id; one then has o(Y;) = Y; for
any j. Since L is generated over K by the coordinates of the Y; and since
0|k =idk, one has o(y) = y for any y € L, hence o = id. This shows that p
is injective. O

Let us now give some examples.

Ezample 6.5.3 (Exponentials). Let K = C(X), endowed with its usual deriva-
tion and consider the equation ¢’ = y. Necessarily, a nonzero solution in a dif-
ferential extension of C(X) is transcendental over C(X). Otherwise, y would
be solution of a polynomial equation of minimal degree
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Y 4 a1y - +ao=0, ag,...,a,_1 € C(X).
Observe that ag # 0. Let us differentiate this relation. One gets
ny" "y 4 (0= Dan—1y" 2y +a,_1y" )+ +ap = 0.
Hence, since 3y’ = v,
ny" + (0= Dan-1+a,_1)y" "+ + (a1 +ay)y +ap =0,

which is another polynomial equation of degree at most n which y satisfies.
The two equations must be proportional, hence af, = nag.
However, if A € C*, there is no nonzero rational function R € C(X) such
m
that " = AR. Let R be a nonzero rational function and let R = ¢ [[ P;™

j=1
be its factorization as a product of distinct monic irreducible polynomials P;,

with exponents n; € Z \ {0}, and ¢ € C*. Then,

R < P
R D nip
j=1 J

This is a decomposition into partial fractions, hence R'/R cannot be constant
unless m = 0, which implies A = 0.

This concludes the proof that y is transcendental over C(X).

The field C(X,Y') of rational functions in two variables, with the derivation
defined by Y/ =Y, is a Picard-Vessiot extension for this differential equation.
By Exercise 6.1, one has, for P € C(X,Y), the formula

, OP oprP

F=axtav
The vector space V' of solutions has dimension 1, namely V = CY. An
automorphism o of L which fixes C(X) is defined by the image of Y, which
belongs to V. Therefore, there is some p(o) € C* such that o(Y) = p(0)Y.
Conversely, if ¢ € C*, the map o.: P(X,Y) — P(X,cY) defines an auto-
morphism of L, moreover an element of Gal”(L/K): if P € C(X,Y), one

has

X,cY)+ (cY) gY(

(X,cY)

P(X,cY) = X,cY)

oP
X
oP oP
= ox (X eY) +eV
oP 0P

= (5x T Y y) (X cY) = P'(X,eY),

so that o, is a morphism of differential fields.
Finally, the group morphism Gal”(L/K) — C* = GL;(C) is an isomor-
phism.
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Ezample 6.5.4 (Logarithm). Again let K = C(X) and consider the differential
equation ¢y’ = 1/X. It is not homogeneous but, as in calculus, its solutions sat-
isfy (Xy’)" = 0 and we rather study the linear homogeneous equation of second
order, ¥ + (1/X)y’ = 0. Let us now find a Picard-Vessiot extension (L, D)
for this equation. Any constant is obviously a solution; in particular, g =1 is
a solution. Letting f € L be any nonconstant solution, then (f,g) are inde-
pendent over C and necessarily form a basis of the vector space of solutions.
Since Xf”" + f' = (Xf')Y =0 and f/ # 0, c = X[ is a nonzero constant,
hence we can assume, replacing f by f/c, that f/ =1/X.

Let us show that f is transcendental over C(X). Otherwise, there would
be an equation of minimal degree

fr4an_1f" M+ +ag =0, ag, ... an—1 € C(X),
which f satisfies. Differentiating, one has
nf U (0= Dan_ 1 f" 2 +al, o f" D 4+ (af +alf) +ah =0,
which can be rewritten as
(/X +ap )" 4+ (a1/X +ap) = 0.

This is an algebraic relation of degree less than n, hence its coefficients are all
zero. In particular, a,,_; = —n/X. But, if A € C*, there is no rational function
R € C(X) such that R’ = A/X. Otherwise, we may write the decomposition
into partial fractions of R as

59

for some polynomial P, some integer m, and where for any j with 1 < j < m,
P; is a monic irreducible polynomial, @); a polynomial which is prime to P;
and whose degree is less than n; deg(P;). Then

QP —n; PlQ;
/ J J
=P+ Z n] T pony+l
which is the decomposition of R’ into partial fractions, except that some terms
may be zero. By uniqueness of such a decomposition, one finds that

— P’ =0, hence P is constant;

— for any j with P; # X, Q;P; —n;PjQ; = 0. Since P; is irreducible and
since it does not divide PJ{ , P; must divide @);, which is a contradiction;

— finally, if P; = X, then QX —n;Q; = —nX™. Since n; > 1, X divides
@, again a contradiction.
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Consequently, R is constant and R’ = 0 # A/X since A # 0. This concludes
the proof that f is transcendental over C(X).

It follows that L = C(X,Y), endowed with the derivation defined by
Y’ = 1/X, is a Picard-Vessiot extension for the equation zy” + ¢ = 0. By
Exercise 6.1, the derivative of P € L is given by the formula

~_oP 1 0P
“ox Txav

The basis (f, g) of the space of solutions allows us to identify V with C? and
GL(V) with GLy(C) Let ¢ € Gal”(L/K) be any differential automorphism
of L. Since g = 1 belongs to K, one has o(g) = ¢g. Moreover, there are a and
b € C such that o(f) = af + bg. Deriving, one finds o(f)" = af’ = a/X,
but o(f) = o(f') = 0(1/X) = 1/X. Consequently, a = 1, and the image of
the homomorphism Gal”(L/K) — GLy(C) is contained in the subgroup U of
2 x 2 matrices of the form (} ¢), for b € C.

Conversely, if ¢ € C, the map o: P — P(X,Y + ¢) defines a differential
automorphism, for, if P € C(X,Y),

Pl

a(P) =P(X,Y +¢)
_op
= 87(
oP 1 0P
(5% + 737
=o(P').

oP
X,Y +¢)+ (Y+c)’8—y(X,Y+c)

X, Y +¢)

Therefore, Gal” (L/K) ~ U. It must also be observed that the map ¢+ (19)
is an isomorphism of groups, C ~ U.

Ezample 6.5.5 (Galois extensions). Let (K, D) be any differential field. As-
sume that its constant field C' is algebraically closed and of characteristic 0,
Let K — L be any Galois extension of K. By Theorem 6.2.6, there is a
unique derivation D on L such that the morphism K — L is a morphism of
differential fields. Let us show that this is a Picard-Vessiot extension for some
differential equation.

By Lemma 6.4.4, a constant in L, being algebraic over K, is algebraic over
the field of constants of K, which is C. Since C' is algebraically closed, C' is
also the field of constants in L.

On the other hand, let n = [L : K] and let f be any element of L. The
dimension of the K-vector space generated by f, f/, f”,... in L is finite, less
or equal than n. This implies that f satisfies a nontrivial differential equation.

Let o be an element of Gal(L/K), and let us consider the map D: L — L
defined by D(z) = o(D(0~!(x))). This is a derivation of L. First of all, this
is a morphism of abelian groups. Moreover, if z, y € L, one has
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D(xy) = o(D(0*(xy))) = o(D(o ™ (z)o ! (y)))
=o(D(e™ (@) o™ (y) + Do~ () 0~ ()
=o(D(c™(2)))o(0™ () + o(D(e ™ (y))o(o™ (2))
= D(z)y + D(y)z.

Since D is the only derivation of L extending the derivation of K, one
has D = D, which means that for any = € L, o(D(x)) = D(o(z)). In other
words, elements of Gal(L/K) are elements of Gal”(L/K) and the natural
injection Gal”(L/K) — Gal(L/K) is an isomorphism. Moreover, any differ-
ential equation satisfied by f is also satisfied by o(f).

Since the extension K — L is Galois, we may consider some f € L which
is a primitive element. Let V' denote the C-vector space in L generated by the

conjugates of f and let (fi,..., fq) be a basis of V' consisting of conjugates
of f.

Let us construct a differential equation of order d whose space of solutions
is V. By construction, fi,..., fq are linearly independent over C, so their

Wronskian W(fi,..., f4) does not vanish. On the other hand, introducing a
formal differential variable and expanding the Wronskian determinant

hoooo fa Y
AR
W, fav)=| "
d d
@y
along the first column, one finds elements Ay, ..., Ay € L such that

W(fl?"')fd7y) :A0Y+A1Y/++Ady(d)

Note that Ay = W(f1,..., fa) #0.
We shall in fact show that for any j, A;/Aq € K, so that the differential
equation

A
y@ ¢ Zdoly@-n oy D0y o (E)

Ag Ag
has its coeflicients in K. We have to show that for any j with 0 < j < d, and
any o € Gal(L/K), 0(A;)/o(Aq) = A, /Aq.
To do that, notice that W(f1,..., fa,Y) depends only on the vector
space V. More precisely if P(f,g) € GL4(C) is the matrix sending a basis
g=1(g1,...,94) of V to the basis f = (f1,..., fq), one has

W(g1,..-,94,Y) =det P(E, )W (f1,..., fa, Y).

If o is any element in Gal(L/K), o(f1),...,0(fq4) form a basis o(f) of V, so
that
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Wi(o(f1),...,o(fa),Y) =det P(f,a(£)) W(f1,..., fs,Y).

Expanding the determinant, we find that for any j € {0,...,d}, 0(4,) =
det P(f,o(f))A;. Consequently, o(A;/Aq) = Aj/Aq, as was to be shown.

The space of solutions of (E) in L is equal to V', hence has dimension d.
Moreover, L is generated by fi; as a field, thus it is generated by V as a
differential field. Finally, L has no constant elements other than the elements
of C. It follows that it is a Picard-Vessiot extension of (E).

Moreover, viewed in matrix form, the isomorphism Gal”(L/K) —
Gal(L/K) corresponds essentially to the (inverse of the) classical morphism
from the symmetric group &, to the linear group GL,(C) given by
permutation matrices.

6.6 The differential Galois correspondence

In the algebraic theory of differential equations, there are Galois groups, and
also an analogue of Galois correspondence. Proofs are too difficult to be given
here, but I would like to convey some ideas about the statements.

Fix a Picard-Vessiot extension K C L, with field of constants C', assumed
algebraically closed and of characteristic zero, corresponding to a differential
equation Y/ = AY, for some A € M, (K). We saw that its differential Galois
group Gal”(L/K) can be seen naturally as a subgroup of GL, (C).

For any subgroup H C Gal”(L/K), we can introduce the subfield L¥
consisting of all z € L such that o(z) = x for any o € H. It is easy to check
that the derivation D: L — L maps L into itself, so that L is a differential
field, and the extension K C L¥ is a differential extension, as is the extension
L7 c L.

There is, however, a new feature: differential Galois groups are not mere
subgroups of some GL,,(C). They are automatically algebraic groups, which
means that there are polynomials P; € Clai1,...,an,] such that a matrix
A = (aij) € GL,(C) belongs the differential Galois group if and only if
Pj(ai1,...,ann) =0 for all j.

Hence, the basic results in differential Galois theory are as follows.

— For any algebraic subgroup H C GalD(L/K), the extension L C L is
a Picard-Vessiot extension (for some differential equation), and its differential
Galois group can be identified with H.

— Conversely, any differential subextension K C E is of the form L for
some algebraic subgroup H ¢ Gal” (L/K).

~If H c Gal? (L/K) is an algebraic subgroup, then the differential ex-
tension K C L' is a Picard-Vessiot extension if and only if H is a normal
subgroup of Gal”(L/K). Then, Gal” (L¥ /K) ~ Gal”(L/K)/H.
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Concerning the analogue of solvability by radicals, one is interested in
solving a differential equation by quadratures, that is, using only indefinite
integrals. So that the theory is neat, one also needs to authorize algebraic
extensions. Then, one can prove that a differential equation is solvable by
quadratures and algebraic extensions if and only if the connected component
of the identity! of Gal”(L/K) is solvable. This is where Lie-Kolchin’s theo-
rem 4.7.2 intervenes in the algebraic theory of differential equations.

6.7 Integration in finite terms, elementary extensions

In this last section, I want to prove a theorem
of Liouville’s concerning functions of which
an antiderivative can be computed “in finite
terms,” for example, using only logarithms
or exponentials. Liouville had proved such
results through a series of articles published
around 1830, but it was not until the middle
of 20th century that Ostrowski recasted
Liouville’s theorem in the algebraic setting
of differential fields. The theory has evolved
to an algorithm (Risch) to compute indefinite
integrals, at least when possible; it is imple-
mented in most computer algebra systems.

Joseph Liouville (1809-1882)

All fields are assumed to have characteristic zero.

Definition 6.7.1. Let (K, D) be a differential field and let a € K. One says
an element t in a differential extension of K is a logarithm of the element a
if a#0 and if ' = a’/a. One says that t is an exponential of a if t # 0 and
t'/t=d.
Definition 6.7.2. Let (K, D) be a differential field. A differential extension
(L, D) of (K, D) is said to be elementary if there are elements t1,...,t, in L
such that

a) L=K(ty,...,tn);

b) the field of constants of L is equal to that of K;

and such that for any j, one of the three following properties holds:
LIf ¢ = C is the field of complex numbers, this is the connected component in

the usual, topological, sense. For an arbitrary field C, one needs to consider the
so-called Zariski topology.
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3a) t; is algebraic over K(t1,...,t;-1);
3b) t; is a logarithm of a nonzero element in K(t1,...,tj-1);
3c) t; is an exponential of an element in K(t1,...,tj_1).

Exercise 6.7.3. Check that, L being an elementary differential extension
of K as in the previous definition, the subfields K (¢1,...,t;), with 1 < j <n,
are differential subfields of L.

Theorem 6.7.4 (Liouville, 1835; Ostrowski, 1946). Let (K, D) be a
differential field of characteristic zero and let f € K. If f has an antiderivative
i an elementary differential extension of K, then there exists an integer n >
0, constants c1,...,c, € K and elements uy,...,u,,v in K such that

n /
/ U;
f=v+4+ E c;i—.
A U;

=1

The proof is done by induction on the number of steps in Definition 6.7.2 of
an elementary extension. One therefore needs a lemma concerning “one-step”
elementary differential extensions, that is, differential extensions generated
by either an algebraic element, an exponential or a logarithm, with the same
field of constants. Assuming that we have proved the proposition below, The-
orem 6.7.4 is proven as follows. We begin with n = 0, by taking for v an
antiderivative of f. Using the proposition below, we successively follow each
step in the definition of an elementary extension. The final step gives us pre-
cisely Liouville’s theorem.

Proposition. Let K C K(t) a “one-step” elementary differential extension
and let f € K which can be written as

n /
/ U;
f=v+ E ci—
, (173

i=1

for some constants ¢; and elements uy,...,u, and v in K(t). Then, f admits
a similar expression in K.

We prove this proposition by distinguishing three cases.

First case: t is algebraic over K. Let K C L be a Galois closure of
the algebraic extension K C K (t), and endow L with its unique derivation
such that K — L is a morphism of differential fields. If o € Gal(L/K) and
x € L, x # 0, one has

Then compute
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L:K]f= 3 of)= D o) +d e Y oluju)

o€Gal(L/K) c€Gal(L/K) =1 o€Gal(L/K)

Set v = (> o(v))/[L : K] and @; = [] o(u;). These elements of L are invariant
under the action of Gal(L/K), hence belong to K. Moreover,

~ 1 a
— Lt
- +; LK%

Second case: t is transcendental over K, and is a logarithm. Then
we can identify the field K (¢) with the field of rational functions in ¢, although
with another structure of a differential field. Let m be any monic irreducible
polynomial in K[T]. For any U € K(T)*, define ord,(U) to be the exponent
of m when one writes U as a product of distinct monic irreducible polynomials
of K[T], times an element in K*. If u = U(t) € K(t), we write ord,(u) for
ord,(U). Similarly, if u = U(t) for U € K[T], we write degu for degU.

Lemma 6.7.5. (Assuming t' € K*.) Let u € K(t)* and let m be any irre-
ducible monic polynomial in K[T].

a) If ord,(u) =0, then ord,(u'/u) = 0

b) If ord,(u) # 0, one has ord, (v’ /u) = —

¢) Ifu="U(t) for some U € K[T], then degu — 1 < degu’ < degu.
Proof of the lemma. Let U € K(T') with uw = U(T) and write U = a [[7,;(T)",

J
for a € K*, nonzero integers n; € Z, and distinct irreducible monic polyno-
mials 7; € K[T]. One thus has u = a[[7;(¢)" and

J

ZRALtl

u o ad m;(t)
E_E+¥njwj(t Z " 7 ( '

Now, for any 7, 7rJD + t'm} is a polynomial of K[T] of degree < deg(m;),

since 7; is monic. Moreover, ¢ is transcendental over K, so that m;(t) ¢ K,
hence 7;(t)" # 0 because K(t) and K are assumed to share the same field
of constants. Consequently, 7; does not divide the polynomial 7TJD +t 7T; and
ord,, of the jth term in u'/u is equal to —1. Since ordy; of the other terms
is 0, one has ord,, (u'/u) = —1, as claimed by b). The formula above also
shows that for any irreducible monic polynomial 7, not among the m;, one
has ord,(u'/u) = 0, hence a).

Let us now show ¢). Let u =U(¢) for U = ug+u1 T + -+ +u, T™ € K[T],
with u, # 0 so that degu = n. One has
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u' = (uf +urt’) + (u) + 2ugt )t + -+ (ul_y + nunt )t ol

If w), # 0, then deg(u') = n = deg(u). Otherwise, observe that the vanishing
of

ul_q + nupt’ = (Up_1 + nu,t)

implies that w,_1 4+ nu,t is constant, hence is in K, hence ¢t € K, which is
absurd! Consequently, u),_; + nu,t’ # 0 and deg(v’) = deg(u) — 1. O

n

Going back to the proof of the second case in the proof of the proposition,
let us expand the logarithmic derivatives in the formula

/
/ Uy
= ci—,
so that it can be rewritten as
/! /!
, a; T
=v + Ci— T *
! Do+ o ()
1 s
where the a; belong to K*, the m are monic irreducible polynomials in K[T7,
and ¢;, ¢, are constants in K.

For any irreducible monic polynomial 7 € K[T] appearing in the denomi-
nator of v, one has ord,(v’) = ord,(v) — 1 < —2. However, ord, of any other
terms is > —1, which makes it impossible for the whole sum to be equal to f,
for we have ord;(f) = 0. This shows that v = V (¢) for V € K|[T].

Since degm(t) < degm(t), equation (x) is a decomposition of the “con-
stant” rational function f into partial fractions. Since such a decomposition
is unique, polar terms vanish, and one has

/
Qa.;
f=v+ E ci—.
- ai
3

In particular v = f — > ¢;(al/a;) belongs to K, so that its degree is zero.
i

This implies that V(T') = ¢T +d for ¢ and d € K, and ¢’ = 0. It follows that

!

f—ct’—l—d’—l—Zc-%—d’—&— ca—l—&—ZOa—;
N p Zal—_ a 2 lai

if ¢ is the logarithm of @ € K*, whence ¢’ = a’/a. This is an expression of the
expected form, hence the proposition in this case.

Third case: t is transcendental over K, and is an exponential.

We continue to identify elements of K () with rational functions in one
variable T'. The proof will be similar to that of the previous case, using the
following lemma instead of Lemma 6.7.5.
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Lemma 6.7.6. (Assuming t'/t € K*.) Let 7 € K[T)] be any irreducible monic
polynomial and let u € K(t).

a) If ord,(u) =0, then ord,(u'/u) = 0

b) Assume ord,(u) # 0. If # # T, then ord,(v'/u) = —1; if 7 = T,
then ord,(u'/u) > 0

c) Ifu=U(t) with U € K[T)], then deg(u') = deg(u).

Proof of the lemma. We begin as in the proof of Lemma 6.7.5: if u =
a[[m;(t)™, one has
J

t/ / (t)

/ .
a+znj77:‘]j((i Z Us
J

Assertion a) follows from this formula. Moreover, the degree of the polynomial
7er (T) + (' /t)T'w(T) is less or equal than the degree of 7;. This implies that
either these two polynomials are coprime, and ord., (u'/u) = —1, or there
exists A € K such that 7P + (' /t)Tn}; = Arj, and ordy, (v /u) > 0

Let us now show that this second case happens only for m; = T". Write 7 =
T" + ppa1 Tt + -+ + po, with po,...,pn—1 € K. Then, denoting a = t'/t,
the relation 72 4+ aTn’ = A can be rewritten as

anT™ + (pj,_y +a(n — Dp,_1)T" " + -+ (9} + ap1)T + p
= ANT" + XApp 1 T+ 4 Apo.

Consequently, A = an. Moreover, for any integer j such that 0 < j < n and
pj # 0, one has p’;/p; = a(n — j) = (n — j)t'/t. This implies that "~ I /p; is
constant, hence is in K, which contradicts the fact that ¢ is transcendental
over K. It follows that m = T™, hence m = T since 7 is irreducible. Conversely,
if =T, one has w(t)/n(t) =t'/t € K*, hence ord, (v /u) >0

To prove ¢), let us consider u = U(T') for some polynomial U € K[T]. If
a=t/te K* and U = u,T™ + - - - + ug, with u,, # 0, one has

i (), + akuy)t*,

so that deg(u’) < deg(u). If one had u!, + nau,, = 0, then
t/

= —na=-n-—,
t

ES
3 I3

so that u,t" would be a constant, hence in K. However, this contradicts the
assumption that ¢ is transcendental over K. Consequently, u), +nau, # 0 and

deg(u') = deg(u). O
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We now go back to the proof of the proposition in the case where ¢ is
an exponential, that is, ¢’ = a't, for some a € K*. As above, we expand the
logarithmic derivatives in an expression

/
uj

!/
f=v+ E ci—,
U;

T

to get
f=v —I—ZQ —|—ch , (%)

where the a; belong to K*, w runs over monic irreducible polynomials in K[T7,
and ¢;, ¢, are nonzero constants in K. Consequently, one has

t)+a'tr’(t) —a'w(t
f=v —|—Zcz —|—Zcﬂa —|—ch W(tg) ()

If © # T and ord, (v) < 0, then ord,(v) < —2, although ord of the right-hand

side is at least —1. This shows that ord,(v) > 0 except maybe for 7 = T'; in

other words, one can write v = ) vjtj , for some v; € K. Then, observe that
JE€Z

for any 7, deg(7P+a'Tn'—a'7) < deg(r). Since f € K is a “constant” rational

function, uniqueness of the decomposition into partial fractions implies that

we can omit the last sums (those with 7 in the denominator). Denoting ¢ =

> ¢, equation (xx) now becomes
™

!
. a
— / ! iay. # ! Ry
f §j :(vj+a]vj) +ca + % Czai
Comparing the degree 0 terms, one gets
f = (vo +ac) E Cz X

which is an expression of the form required by the proposition.

Having concluded the proof of the last case of the intermediate proposition,
the proof of Liouville’s theorem 6.7.4 is completed. Let us now give some
concrete applications.

Proposition 6.7.7. Let f and g be two rational functions in C(X). Assume
that f # 0, that g is not constant, and that fexp(g) has an antiderivative in
an elementary differential extension of C(X,exp(g)). Then, there exists a in
C(X) such that

f=d +ag'.
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Proof. First, we observe that if f = da’ + ag’, then one has fexp(g) =
(aexp(g))’. Conversely, assume that f has an elementary antiderivative. By
Liouville’s theorem, we may write

for v € C(X,exp(g)), ¢; € C, u; € C(X,exp(g)). Set T = exp(g); it is
transcendental over C(X) (see Exercise 1.3), so that we can identify u; and v
to rational functions in one variable T with coefficients in the field C(X). As
above, we may assume that either u; € C(X), or u; is an irreducible monic
polynomial with coefficients in C(X).

As in the proof of the last case of Liouville’s theorem, the only u; which
can appear are T' or elements of C(X). Similarly, the denominator of v is a
power of T' and we write v = > v;(X)T7 (the j are rational integers), hence

J

: : ui(X)
fT = () +jg'v))T? + cg’ + Z “u(X)

J

Comparing the coefficients of T" on each side, we find
f=v1+g"w,
hence the proposition, with a = v. ]

Ezample 6.7.8. The “function” exp(x?) has no elementary antiderivative.
Otherwise, there would exist a € C(z) such that 1 = o/ + 2za. But this
is impossible: a pole of a is a double pole of a’, and an at most simple pole
of 1 —2zxa, so that a is a polynomial. Then 1 — a’ = 2za although they do not
have the same degree.

Exercise 6.6 proposes other explicit examples.
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6.8 Appendix: Hilbert’s Nullstellensatz

This section is devoted to the study of the max-
imal ideals in the ring k[X3,...,X,] of poly-
nomials in n variables with coefficients in a
field k. The main result is Hilbert’s Nullstel-
lensatz (literally, theorem of the location of ze-
ros). This result has many incarnations, all in-
teresting. Here are three of them. When k is
uncountable, for example, in the already very
important case k = C, one can give a very
simple proof of these theorems.

Theorem 6.8.1 (Algebras). Let k be a field
and let A be any finitely generated k-algebra 3
If A is a field, then it is a finite (algebraic) David Hilbert (1862-1943)
extension of k.

Theorem 6.8.2 (Ideals). Let k be an algebraically closed field. Let I be a
mazimal ideal in the ring k[ X1, ..., X,]. Then there are ay,...,a, in k such
that I = (X1 —a1,..., Xn — an).

Theorem 6.8.3 (Equations). Let k be an algebraically closed field and let
Py, ..., Py be polynomials of k[X1,...,X,]. If the system of algebraic equa-
tions

Pi(z1,...,xn) =" =Pp(x1,...,2,) =0

has no solution in k™, then there are polynomials Q1,...,Qm such that
1=PQ1+ + PpQmn.

This last form of Hilbert’s Nullstellensatz means that if a system of polynomial
equations in many variables has no solution in an algebraically closed field,
the system is incompatible in a very strong sense, for an equality as given by
the theorem obviously prevents the system P, = --- = P, = 0 from having
solutions in any field containing k.

Proof of Theorem 6.8.1 when k is uncountable. Let x1,...,x, in A such that
A = k[x1,...,2,]. Any element of A can be written (not uniquely) as a
polynomial in z1,...,x,. This implies that the dimension of A as a k-vector
space is not greater than the cardinality of the set of monomials in n variables.
In particular, dimy A is at most countable.

Assume now that one of the x;, say z1, is transcendental over k. Then,
the ring k[x1] is isomorphic to the ring of polynomials k[X], and A being a
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field, A contains the field k(x1) which is isomorphic to the field of rational
functions k(X). However, the elements 1/(X — a), for a € k, are linearly
independent over k. This can be proved directly, but also follows from the
uniqueness of the decomposition of rational functions into partial fractions.
Since k is uncountable, the dimension of k(X) as a k-vector space is uncount-
able. This contradicts the existence of an inclusion k(X) C A.

Consequently, z1,...,x, are algebraic over k and A is algebraic over k.
By induction, one even sees that the extension k C A is finite. O

Proof of Theorem 6.8.2. Let (ai,...,a,) € k™ and let I be the ideal
of k[Xy,...,X,] generated by X1 —a1,..., X, —ay,. Let P € k[Xq,...,X,)]
and write down the Euclidean division of P by X7 — a1 (the degree variable
being X7). Thus there exist polynomials P; and Q1 € k[X7, ..., X,,] such that

P(Xl,...7Xn) = (Xl — al)Ql(Xl,...7Xn) +P1(Xla-~-7Xn)7

the polynomial P; being of degree < deg(X; — a1) in the variable X;. This
means that P; does not depend on X7, hence P; € k[Xa,...,X,]. By induc-
tion, we find an expression

P(Xq,....X,)=(X1—a1)Q1+ (X2 —a2)Q2 + - - + (Xp, — an)Qn + Py,

where P, is a constant polynomial, necessarily equal to P(aq,...,ay). It fol-
lows that P(ai,...,a,) =0 if and only if P € I.

Let J be any ideal of k[X7,...,X,] containing I, with J # I, and let
P e J\I. One has P(ay,...,a,) # 0. Since the polynomial

P(Xl,...,Xn)—P(ah...,an)

vanishes at (aq,...,a,), it belongs to I, so to J. It follows that P(ay,...,a,)
belongs to J. Since this is a nonzero element of k, its inverse belongs to J too
and 1 € J, so that J = k[X1, ..., X,]. This shows that I is a maximal ideal.

Conversely, let I be any maximal ideal of k[Xy,...,X,]. Let us in-
troduce the quotient ring A = k[Xy,...,X,]/I and the canonical mor-
phism k[Xi,...,X,] — A. Denote by z; the image of X; in A. One has
A =k[x1,...,2z,] and A is a finitely generated k-algebra, and so is A/I. Since
I is a maximal ideal, A/T is a field. By Theorem 6.8.1, the extension k C A
is algebraic. Since k is algebraically closed, this is an isomorphism and there
is for any j an element a; € k such that x; = a;. In other words, X; —a; € I
for any j and the ideal I contains the maximal ideal (X; — a1,..., X, — ap).
One must have equality, q.e.d. O

Proof of Theorem 6.8.3. Let I be the ideal generated by Pi,...,P,. Let
m be any maximal ideal of k[X1,...,X,]. If one had I C m, the n-tuple
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(ai,...,ay) such that m = (X; —ay,...,X,, — a,,) would be a solution of
the system of equations Pj(z1,...,2,) = 0, 1 < j < m. This means that
no maximal ideal of k[X1,..., X,] contains I, so that I = k[Xy,...,X,] by
Krull’s theorem 2.5.3. Therefore, 1 € I and there are polynomials Q1, ..., Qm
such that 1 = PLQ1 + - + P,Qm. O

Exercises

Exercise 6.1. a) Let (A, D) be a differential ring, and let P € A[X,Y] be a
polynomial in two variables X and Y. Denote by PP the polynomial obtained by
differentiating the coefficients of P, and by 0P/0X et 0P/JY the partial derivatives
of P with respect to X and Y.

For any elements z, y € A, show that

, ,OP ,oP
P(z,y)" = PP (w,y) + 2" 5 (2,9) + ' 55 (2,9).

0X
b) Extend this formula to the case of rational fractions P € K(X,Y), where K is
a differential field.

Exercise 6.2. Let (A, D) be any differential ring and let G € M, (A). Show that
(deg G)" = Tr(Com(G)G"),

where Com(G) denotes the comatrix of G, that is, the transpose of the matrix of
cofactors.

Exercise 6.3. Let A be any ring. Denote by Ale] the ring A[X]/(X?), where ¢
denotes the class of X. In other words, Ale] = {a + be; a,b € A}, addition and
multiplication being given by (a + be) + (a’ + b'e) = (a + a’) + (b + b')e and
(a+be)(a' +Ve) = (ad') + (a'b+ ab)e.

Let 7 denote the morphism of rings, m: A[e] — A, given by m(a + be) = a for
any ¢ and b € A

a) Let D be any derivation of A. Show that the map ¢pp: A — Ale] defined by
¢p(a) =a+eD(a) is a ring morphism.

b) Conversely, if ¢: A — A[e] is a ring morphism with 7 o ¢ = ida, show that
there is a unique derivation D of A such that ¢ = ¢p.

Exercise 6.4. The goal of this exercise is to describe a Picard-Vessiot extension for
the equation y’ 4+ y = 0, over the field C(X) of rational functions, endowed with
the usual derivation.

Define R = C[X,Y1,Y2,Y!,Y5] and endow it with the unique derivation such
that (¥;)' = Y} and (¥]) = ~Y;.
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a) Show that the set of constant elements of R contains C, but contains other
elements. (Think of the trigonometric relation sin®(z) + cos®(x) = 1.)

b) Show that the field C(X,Y) endowed with the derivation defined by Y’ = iY’
is a Picard-Vessiot extension of the equation 3’ +y = 0.

Exercise 6.5. Let (K, D) be a differential field with field of constants C, which we
assume to be algebraically closed and of characteristic zero.
Let (E): ™ + an_1y™ Y 4+ ... + aoy = 0 be any order n differential equation.
Let (L, D) be a Picard-Vessiot extension for this equation.
Let f1,..., fn be a C-basis of the vector space of solutions of (E) in L.
a) Compute the derivative of the Wronskian W (f1,..., fr).
b) For o € Gal?(L/K), compute o(W (fi,..., fa)) in terms of the image of o
in GL,(C).

c) Generalize to the case of a differential system Y’ = AY.

Exercise 6.6. a) Show that the functions exp(z)/z, exp(exp(z)) have no elemen-
tary antiderivative.

b) Show that 1/(x® + 1) has no antiderivative in any elementary differential ex-
tension of R(X), but has one in an elementary extension of C(X).

c) Show that sin(z)/z has no elementary antiderivative.
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I conclude this book by a list of exercises and problems that students were
really asked to solve for exams. Some of them are quite substantial.

Ezercise 7.1 proves a theorem of Selmer which shows that for any inte-
ger n = 2, the polynomial X™ — X — 1 is irreducible over Q.

Ezercise 7.2 is an elaboration on the casus irreductibilis: it ezplains and
generalizes the fact that although the three roots of a polynomial equation of
degree 3 might be real numbers, Cardan’s formulae use complex numbers.

Ezercise 7.5 is a theorem due to Galois about solvability by radicals of
equations of prime degree.

Exercise 7.11 proves a theorem due to E. Artin and O. Schreier about

subfields F' of an algebraically closed field §2 such that [(2 : F] is finite.
Exercise 7.1. Let n be any integer > 2, and let S = X™ — X — 1. You shall
show, following E. Selmer!, that S is irreducible in Z[X].

a) Show that S has n distinct roots in C.

b) For any polyomial P € C[X] such that P(0) # 0, set

m

1
=1 /
where z1,...,z, are the complex roots of P, repeated according to their

multiplicities.

Compute ¢(P) in terms of the coefficients of P. Compute ¢(S).

If P and @ are two polynomials in Q[X]| with P(0)Q(0) # 0, show
that (PQ) = ¢(P) + »(Q).

c) For any root z of S, establish the inequality

! Math. Scand. 4 (1956), p. 287-302
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(Set z = re? and evaluate cos(f) in terms of r.)

m
d) If z1,...,z, are positive real numbers with [[ z; = 1, show that

Jj=1
m
E X 2 m.
j=1

e) Let P and @ be two polynomials in Z[X], of positive degrees, such
that S = PQ. Show that |P(0)] = 1 and that ¢(P) is a positive integer.
Derive a contradiction, hence that S is an irreducible polynomial in Z[X].

Exercise 7.2. Let E be any subfield of the field R of real numbers. By def-
inition, a real radical extension of E is a radical extension of E contained
in R.

a) Let £ C F be any finite Galois extension, with ' C R. Let @ € R such
that oV € E, where N > 2 is an integer, so that the extension E C E(a) is
real radical, of exponent N.

(i) Let m = [E(a) : F N E(a)] and set § = a™. Show that § belongs
to F'N E(a). Deduce that F'N E(a) = E(f).

(#) Observe that some power of 8 belongs to E and show that [E(f) : E]
equals 1 or 2.

b) Let E C F be a finite Galois extension, with F' C R; let E C K be any
real radical extension. Show that [K N F : E] is a power of 2. (By induction:
introduce L C K such that ' C L is elementary radical, apply the induction
hypothesis to the Galois extension L C FL and to the radical extension
LCK.)

c) Let P € Q[X] be an irreducible polynomial of degree n, all the roots
of which are real. Assume that one of the roots a of P belongs to some real
radical extension of Q.

Show that n is a power of 2.

Exercise 7.3. a) Show that the real numbers 1, V2 and /5 are linearly
independent over the field Q of rational numbers.

b) We denote by K the field generated in R by v/2 and +/5. What is the
degree of the extension Q C K7

c) Show that the extension Q C K is Galois and compute its Galois group.
d) Find an element o € K such that K = Q(«).
e) Give the list of all subfields of K.
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Exercise 7.4. a) Let K be a field of characteristic zero, let d € K such that
d is not a square, and let K C K(1/d) be the quadratic extension generated
by a square root of d in an algebraic closure of K.

Let 2 € K. Show that x is a square in K (v/d) if and only if, either z is a
square in K, or dz is a square in K.

Through the end of this exercise, we shall consider three rational num-
bers r, s and t. Assume that ¢ is not a square in Q. Denote by v/t one of
the two complex square roots of ¢ and set £ = Q(v/t). Assume moreover
that 7 + s/t is not a square in Q(+/%), denote by a one of the two complex
square roots of r + sv/t, and set F = E(a).

b) Show that [F' : E] = 4. What is the minimal polynomial over Q of a?
What are its conjugates in C?
c) Show that the following are equivalent:
(i) the extension Q C F' is Galois;
(ii) r — sv/t is a square in F
(iii) there exists x € Q such that r? —s*t = 22 (first case) or r? — st =
tz? (second case).

d) Assume that the extension Q C F' is Galois. In the first case, show that
Gal(F/Q) ~ (Z/2Z)?. In the second case, show that Gal(F/Q) ~ Z/4Z.
(Notice that an element of the Galois group is determined by the image of «,
at least if s # 0, and be methodic.)

e) (Numerical application) Write /5 + v/21 without nested radicals. Is it

possible for /7 + 257

Exercise 7.5. The aim of this exercise is to prove Proposition Vil of Galois’s
dissertation: “For an irreducible equation of prime degree to be solvable by rad-
icals, it is necessary and sufficient that, any two of its roots being known, the
others can be deduced rationally from them.” (French: “Pour qu'une équation
irréductible de degré premier soit soluble par radicaux, il faut et il suffit
que deux quelconques des racines étant connues, les autres s’en déduisent
rationnellement.”)

Part 1. Group theory

a) Let X be a finite set, G a subgroup of the group &(X) of permutations
of X. Assume that G acts transitively on X. Let H be a normal subgroup
in G.

(4) If z and y are two elements in X, and if Staby (x) and Staby (y) denote
their stabilizers in H, show that there exists g € G such that g Stabg (y)g~! =
Stabg(x). Deduce that the orbits of 2 and y under the action of H have the
same cardinality.



184 Examination problems

(4i) We moreover assume that the cardinality of X is a prime number. If
H +# {1}, show that H acts transitively on X.

b) Let p be a a prime number, and let B, be the subgroup of permutations
of Z/pZ that have the form m +— am + b with a and b in Z/pZ.
(i) What is the cardinality of B,?
(7) Show that B, acts transitively on Z/pZ. Let h be any element in B,
which fixes two distinct elements of Z/pZ. Show that h = id.
(#4) Show that B, is solvable. (You might want to introduce the subgroup
of B, consisting of permutations of the form m — m + b, with b € Z/pZ.)

c) Let p be a prime number and let G be a subgroup of the symmetric
group &,. Assume that G is solvable and acts transitively on {1,...,p}. Let

{1}=GoCGiC - CGn=C

be a series of subgroups of GG, where for each i, GG; is normal in G;y1, with
Gi11/G; a cyclic group of prime order.
(i) Show that Gy is generated by some circular permutation of order p.

(#i) Show that there is ¢ € &, such that 07'Gy0 is generated by the
circular permutation (1,2,...,p).

(éi1) Identify the set {1,...,p} with Z/pZ by associating to an integer its
class modulo p. This identifies the group &, of permutations of {1, ..., p} with
the group of permutations of Z/pZ. In particular, the group B, of question b)
is now viewed as a subgroup of &,,.

Show that 0~ 'Go is contained in B,,.

Part 2. Field extensions
Let E be a field, let P € E[X] be an irreducible separable polynomial of
prime degree p, and let E C F' be a splitting extension of P.

a) (i) Explain how the Galois group Gal(F/E) can be identified with a
transitive subgroup of &,.
(#) If Gal(F/E) is solvable, show that, e and § € F being any two distinct
roots of P, then F' = E(«, 3).
b) (i) Show that Gal(F/FE) contains a circular permutation of order p.
(#) Assume that there is a root a € F of P such that F' = F(«a). Show
that Gal(F/E) ~ Z/pZ.
Assume for the rest of this question that there are two distinct roots of P,
a and (8 € F, such that F' = E(a, 93).
(#i) Show that [F: E] < p(p — 1).
(iv) Show that Gal(F/FE) contains a circular permutation of order p.
(v) Let 0 and 7 be two circular permutations of order p in Gal(F/E).
Show that they generate the same cyclic subgroup of order p, and conclude
that this subgroup is normal in G.
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(vi) Show that Gal(F/FE) is solvable.

Exercise 7.6. a) Which of the following complex numbers are algebraic
numbers? Give their minimal polynomial.
V2, V1+V2, (1+72)/(1 ).
b) Does there exist x € Q(v/3) whose square is 2?
c) Let K C E be a quadratic extension ([F : K] = 2). Let P € K[X] be any
polynomial of degree 3. One assumes that P has a root in F. Show that P
has a root in K. Is the polynomial P split in K7 In E?

Exercise 7.7. a) Let G denote the finite group &4. Let H be the set of
permutations o € G such that (1) = 1.
(i) Compute card G, card H. Show that H is a subgroup of G and com-
pute (G : H).
(#) Show that H is not normal in G.
(#i) For any 7 € G \ H, show that G is generated by H and 7.

b) Show that any group of cardinality equal to 4 contains an element of
order 2. Of which general theorem is this a (very) particular case?

c) Let G be a finite group, let H be a normal subgroup of G such
that (G : H) =4. Show that there exists a subgroup K in G such
that H C K and (G : K) = 2.

d) Let E C F be an extension of fields with [F : E] = 4. If it is Galois, show
that there exists a field K such that £ C K C F. Give an example where
such a field does not exist.

Exercise 7.8. a) Let E be an infinite field and let P € F[Xq,...,X4] be a
nonzero polynomial in d variables. Show by induction on d that there exists
(71,...,74) € B such that P(zy,...,24) # 0.

Let A and B be two matrices in M, (F). Assume that there is a finite
extension F' of E such that A and B are conjugate in M, (F'). (Reminder: this
means that there is an invertible matrix P € GL,,(F) such that B = P~1AP.)
Denote by (aq,...,aq4) a basis of F' as an E-vector space.

b) Show that there are matrices Py,..., P; € M,(F) such that P,A = BPF,
for any ¢ € {1,...,d} and such that det(}_ «; P;) # 0.

d
c) Show that there are x1,...,24 € E such that the matrix P = > a;P; is

i=1
invertible in M, (FE).
Conclude that A and B are conjugate in M, (E).

Exercise 7.9. a) What are the conjugates of v/2 4 v/5 over Q?
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b) Let K = Q(v/2 + v/5). Determine the degree of the extension Q C K.
Show that this extension is not Galois.

c) Let Q C L be its Galois closure inside the field of complex numbers.
Compute [L : Q].

Exercise 7.10. Let pi1,...,p, be distinct prime numbers. Let
K = Q(yp1,---,+/Pn) be the field generated in R by their square
roots.

a) Show that the extension Q C K is Galois.

b) Let 0 € Gal(K/Q). Show that there exists, for any ¢ € {1,...,n}, an
element ¢;(0) € {£1} such that

o(vpi) = €i(0)\/pi-

Show that the map ¢ defined by e(o) = (£1(0),...,en(0)) is a morphism of
groups from Gal(K/Q) to {£1}".

c) Show that ¢ is injective.

d) For any nonempty subset I C {1,...,n}, show that there is o €
Gal(K/Q) such that [] €;(c) = —1. Conclude that ¢ is surjective.
iel
e) What is [K : Q] equal to? Show in particular that the real numbers
/D1, --,+/Pn are linearly independent over the field of rational numbers.

Exercise 7.11. The goal of this exercise is to prove? a theorem due to

E. Artin and O. Schreier (1927) which characterizes fields F' the alge-
braic closure of which satisfies [£2: F] < co. In particular, one will find
that [2 : F] = 2. Parts 1 and 2 are independent. Part 3 uses results from
Part 2.

Part 1. Real closed fields
Say a field K is real closed if it satisfies the three following properties:
a) —1 is not a square in K;

b) any element of K is either a square, or minus a square;
c) the field K(v/—1) is algebraically closed.

a) Show that R is real closed, as is the the subfield R N Q of real numbers
that are algebraic over Q.

b) If K is a real closed field, show that any polynomial of odd degree with
coefficients in K has a root in K. Describe more generally the irreducible
polynomials with coefficients in a real closed field.

2 This proof is due to W. Waterhouse, Amer. Math. Monthly, April 1985, p. 270
273.
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¢) Let K be areal closed field. If a and b are elements of K, show that a?+b2
is a square in K. Prove that any sum of squares in K is still a square.

d) Show that a real closed field has characteristic 0. (Show that for any

integer n > 0, nlk is a square in K.)

Part 2. Cyclic extensions
Let p be any prime number. Let £ C F be a Galois extension with
group Z/pZ. Denote by o a generator of Gal(F/E).

a) If x € F, set
N(z)=zo(z)...0P " Yz) and T(z)=z+o(z)+ -+ (z).

(i) Show that these are elements of E.
(#) Show that, for z, y € F, one has N(zy) = N(z)N(y) et T(x +y) =
T(x) +T(y).
(#4) Show that, for @ € E and = € F, one has N(ax) = a?N(z) and
T(az) = aT(z).
b) Assume that there is ¢ € E, { # 1, such that ¢(? = 1. Show the existence
of y € F with o(y) = Cy; conclude that y? € E and F = E(y).

c) Why does there exist § € F with F' = E[6]? Show that the determinant

1 0 62 gr—1

o o6 ... o1

et (0) (67) : (677)
1o 1(0) oP=1(02) ... oP~ (P~ 1)

is not zero.

d) Show that T': F — F is an E-linear surjective map. Show that for z € F,
T(xz) =0 if and only if there is y € F with z = o(y) — v.

e) Assume that the field F has characteristic p. Show that there is y € F
with o(y) = y + 1, then show that F = E(y) and y? —y € E.

Part 3. Proof of Artin—Schreier’s theorem
Let {2 be an algebraically closed field and let F' C {2 be any subfield, with
F # 2, such that [2 : F] < co. Denote by i an element of {2 such that i2 = —1.

a) Show that the extension F' C {2 is Galois. (If F' has characteristic p > 0,
first prove that F' is perfect.)

In the following questions b) to e), assume that [(2 : F]] is a prime number p.
b) What is the Galois group of the extension F' C 27
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¢) In this question, assume that the characteristic of F' is equal to p.
(i) If z € 02, show that T'(2)P — T(z) = T(2F — z).
(#4) Show that any element of F' has the form a? — z, for some z € F.
(#4) Using question e) of Part 2, derive a contradiction.

d) Assume that p is odd. Show that there is an element ¢ € F', { # 1, such
that ¢? = 1. By Part 2, question b), there is y € {2 such that 2 = F(y)
and y? € F. Let z € 2 be such 2P = y; show that N(z)? = y? and obtain a
contradiction.

e) It follows that p = 2. Show that 2 = F(i), and that F is a real closed
field.

£) (Back to the general case.) Show that F is a real closed field and that
[2:F]=2.
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