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Note to Students

This little book is not intended to be a textbook for a course dealing with an in-

troduction to constructing and writing mathematical proofs. It is intended to be a

reference book for students who need to construct and write proofs in their upper

division mathematics courses. So it is assumed that students who use this as a

reference have already taken an “introduction to proofs” course.

With the exception of Chapter 1, each chapter in the book has a description

of a proof technique along with some justification as to why it is a valid proof

method. There are then one or two completed proofs written according to the

writing guidelines for mathematical proofs in Appendix A. The intent is to illus-

trate a well-written proof for that particular proof method. Each chapter then ends

with three to five practice problems, most of which deal with mathematical proofs.

Completed proofs (or solutions) for the practice problems are contained in Ap-

pendix B. So students can check their work or see other examples of well-written

proofs. Chapter 1 contains most of the definitions used in the first six chapters

of this book and a short summary of some logic that is pertinent to constructing

mathematical proofs.

The proofs in this book primarily use the concepts of even and odd integers,

the concept of one integer dividing another, and the concept of congruence in the

integers. Most of this book is based on material in chapter 3 of the book Math-

ematical Reasoning: Writing and Proof, Version 3 by Ted Sundstrom, which is a

textbook for an “introduction to proofs” course. It is free to download as a pdf file

at

https://scholarworks.gvsu.edu/books/24/ .

A printed version of this book is also available on amazon.com for $22 at

http://gvsu.edu/s/1qt.
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viii Note to Students

Finally, there is a website for Mathematical Reasoning: Writing and Proof,

Version 3. Please visit

www.tedsundstrom.com

and click on the TEXTBOOKS button in the upper right corner. This website

contains useful resources for an introduction to mathematical proofs course, and

some of these resources could be useful for students in upper division mathematics

courses.

www.tedsundstrom.com


Chapter 1

Preliminaries

This chapter is meant primarily for review and to clearly state the definitions that

will be used in proofs throughout the text. For those who are familiar with this ma-

terial, it is not necessary to read this chapter. It is included primarily for reference

for the discussion of proofs in the other chapters.

1.1 Definitions

Definitions play a very important role in mathematics. A direct proof of a proposi-

tion in mathematics is often a demonstration that the proposition follows logically

from certain definitions and previously proven propositions. A definition is an

agreement that a particular word or phrase will stand for some object, property,

or other concept that we expect to refer to often. In many elementary proofs, the

answer to the question, “How do we prove a certain proposition?”, is often an-

swered by means of a definition. For mathematical proofs, we need very precise

and carefully worded definitions.

1



2 Chapter 1. Preliminaries

Definitions Involving the Natural Numbers and the Integers

Definition.

� The set of natural numbers, denoted by N, consists of the counting

numbers (1, 2, 3, and so on). That is

N D f1; 2; 3; : : :g:

� The set of whole numbers, denoted by W, consists of the counting

numbers and zero. That is

W D f0; 1; 2; 3; : : :g:

� The set of integers, denoted by Z, consists of the whole numbers and

their corresponding negatives. That is,

Z D f: : : ; �3; �2; �1; 0; 1; 2; 3; : : :g:

Definition. An integer a is an even integer provided that there exists an

integer n such that a D 2n. An integer a is an odd integer provided there

exists an integer n such that a D 2n C 1.

Definition. A nonzero integer m divides an integer n provided that there is

an integer q such that n D m � q. We also say that m is a divisor of n, m is a

factor of n, and n is a multiple of m.

Notes

� If a and b are integers and a ¤ 0, we frequently use the notation a j b as a

shorthand for “a divides b.”

� The integer 0 is not a divisor of any integer but is a multiple of every integer.

Definition. A natural number p is a prime number provided that it is greater

than 1 and the only natural numbers that are factors of p are 1 and p. A natural

number other than 1 that is not a prime number is a composite number. The

number 1 is neither prime nor composite.
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Definition. Let n 2 N. If a and b are integers, then we say that a is congruent

to b modulo n provided that n divides a � b. A standard notation for this is

a � b .mod n/. This is read as “a is congruent to b modulo n” or “a is

congruent to b mod n.”

Definitions Involving Sets

Definition. Two sets, A and B , are equal when they have precisely the same

elements.

The set A is a subset of a set B provided that each element of A is an element

of B .

Notation

� When two sets A and B are equal, we write A D B . When they are not

equal, we write A ¤ B .

� When the set A is a subset of the set B , we write A � B and also say that A

is contained in B . When A is not a subset of B , we write A 6� B .

Definition. Let A and B be two sets contained in some universal set U . The

set A is a proper subset of B provided that A � B and A ¤ B .

Notation: When the set A is a proper subset of the set B , we write A � B .

Definition. Let A and B be subsets of some universal set U. The intersection

of A and B , written A \ B and read “A intersect B ,” is the set of all elements

that are in both A and B . That is,

A \ B D fx 2 U j x 2 A and x 2 Bg:

The union of A and B , written A [ B and read “A union B ,” is the set of all

elements that are in A or in B . That is,

A [ B D fx 2 U j x 2 A or x 2 BgŠ:
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Definition. Let A and B be subsets of some universal set U. The set differ-

ence of A and B , or relative complement of B with respect to A, written

A � B and read “A minus B” or “the complement of B with respect to A,” is

the set of all elements in A that are not in B . That is,

A � B D fx 2 U j x 2 A and x … Bg:

The complement of the set A, written Ac and read “the complement of A,”

is the set of all elements of U that are not in A. That is,

Ac D fx 2 U j x … Ag:

1.2 Useful Logic for Constructing Proofs

A statement is a declarative sentence that is either true or false but not both. A

compound statement is a statement that contains one or more operators. Because

some operators are used so frequently in logic and mathematics, we give them

names and use special symbols to represent them.

� The conjunction of the statements P and Q is the statement “P and Q”

and is denoted by P ^ Q . The statement P ^ Q is true only when both P

and Q are true.

� The disjunction of the statements P and Q is the statement “P or Q” and

is denoted by P _ Q . The statement P _ Q is true only when at least one

of P or Q is true.

� The negation (of a statement) of the statement P is the statement “not P ”

and is denoted by :P . The negation of P is true only when P is false, and

:P is false only when P is true.

� The implication or conditional is the statement “If P then Q” and is de-

noted by P ! Q . The statement P ! Q is often read as “P implies Q.

The statement P ! Q is false only when P is true and Q is false.

� The biconditional statement is the statement “P if and only if Q” and is

denoted by P $ Q. The statement P $ Q is true only when both P and

Q have the same truth values.
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Definition. Two expressions X and Y are logically equivalent provided that

they have the same truth value for all possible combinations of truth values for

all variables appearing in the two expressions. In this case, we write X � Y

and say that X and Y are logically equivalent.

Theorem 1.1 states some of the most frequently used logical equivalencies used

when writing mathematical proofs.

Theorem 1.1 (Important Logical Equivalencies)

For statements P , Q, and R,

De Morgan’s Laws : .P ^ Q/ � :P _ :Q

: .P _ Q/ � :P ^ :Q

Conditional Statements P ! Q � :Q ! :P (contrapositive)

P ! Q � :P _ Q

: .P ! Q/ � P ^ :Q

Biconditional Statement .P $ Q/ � .P ! Q/ ^ .Q ! P /

Double Negation : .:P/ � P

Distributive Laws P _ .Q ^ R/ � .P _ Q/ ^ .P _ R/

P ^ .Q _ R/ � .P ^ Q/ _ .P ^ R/

Conditionals with P ! .Q _ R/ � .P ^ :Q/ ! R

Disjunctions .P _ Q/ ! R � .P ! R/ ^ .Q ! R/

Definition. The phrase “for every” (or its equivalents) is called a universal

quantifier. The phrase “there exists” (or its equivalents) is called an existen-

tial quantifier. The symbol 8 is used to denote a universal quantifier, and the

symbol 9 is used to denote an existential quantifier.

Theorem 1.2 (Negations of Quantified Statements)

For any open sentence P.x/,

: .8x 2 U / ŒP.x/� � .9x 2 U / Œ:P.x/� , and

: .9x 2 U / ŒP.x/� � .8x 2 U / Œ:P.x/� :



Chapter 2

Direct Proofs

In order to prove that a conditional statement P ! Q is true, we only need to

prove that Q is true whenever P is true. This is because the conditional statement

is true whenever the hypothesis is false. So in a direct proof of P ! Q, we assume

that P is true, and using this assumption, we proceed through a logical sequence of

steps to arrive at the conclusion that Q is true. Unfortunately, it is often not easy to

discover how to start this logical sequence of steps or how to get to the conclusion

that Q is true. We will describe a method of exploration that often can help in

discovering the steps of a proof. This method will involve working forward from

the hypothesis, P , and backward from the conclusion, Q. We will illustrate this

“forward-backward” method with the following proposition.

2.1 Using the Definitions of Congruence and Divides

We will consider the following proposition and try to determine if it is true or false.

Proposition 2.1. For all integers a and b, if a � 5 .mod 8/ and b � 6 .mod 8/,

then .a C b/ � 3 .mod 8/.

Before we try to prove a proposition, it is a good idea to try some examples

for which the hypothesis is true and then determine whether or not the conclusion

is true for these examples. The idea is to convince ourselves that this proposition

at least appears to be true. On the other hand, if we find an example where the

hypothesis is true and the conclusion is false, then we have found a counterexam-

ple for the proposition and we would have prove the proposition to be false. The

6
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following table summarizes four examples that suggest this proposition is true.

a b a C b Is .a C b/ � 2 .mod 8/?

5 6 11 Yes, since 11 � 3 .mod 8/

13 22 35 Yes, since 35 � 3 .mod 8/

�3 14 11 Yes, since 11 � 3 .mod 8/

�11 �2 �13 Yes, since �13 � 3 .mod 8/

We will not attempt to construct a proof of this proposition. We will start with

the backwards process. Please keep in mind that it is a good idea to write all of this

down on paper. We should not try to construct a proof in our heads. Writing helps.

We know that the goal is to prove that .a C b/ � 3 .mod 8/. (We label this

as statement Q.) We then ask a “backwards question” such as, “How do we prove

.a C b/ � 3 .mod 8/?” We may be able to answer this question in different ways

depending on whether or not we have some previously proven results, but we can

always use the definition. An answer to this question is, “We can prove that 8

divides .a C b/ � 3.” (We label this as statement Q1). We now ask, “How can we

prove that 8 divides .a C b/ � 3?” Again, we can use the definition and answer

that we can prove that there exists an integer k such that .a C b/ � 3 D 8k. (This

is statement Q2.) Here is what we should have written down.

� Q: .a C b/ � 3 .mod 8/.

� Q1: 8 divides .a C b/ � 3.

� Q2: There exists an integer k such that .a C b/ � 3 D 8k.

The idea is that if we can prove that Q2 is true, then we can conclude that Q1

is true, and then we can conclude that Q is true. Q2 is a good place to stop the

backwards process since it involves proving that something exists and we have

an equation with which to work. So we start the forward process. We start by

writing down the assumptions stated in the hypothesis of the proposition and label

it statement P . We then make conclusions based on these assumptions. While

doing this, we look at the items in the backward process and try to find ways to

connect the conclusions in the forward process to the backward process. From

statement P , we conclude that 8 divides a � 5 and 8 divides b � 6. (This becomes

statement P1.) We make a conclusion based on statement P1, which becomes

statement P 2. The forward process can be summarized as follows:

� P : a and b are integers and a � 5 .mod 8/ and b � 6 .mod 8/.

� P1: 8 divides a � 5 and 8 divides b � 6.
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� P 2: There exists an integer m such that a � 5 D 8m and there exists an

integer n such that b � 6 D 8n.

It now seems that there is a way to connect the forward part .P 2/ to the backward

part .Q2/ using the existence of m and n (which have been proven to exist) and

the equations in P 2 and Q2.

Solving the two equations in P 2 for a and b, we obtain a D 8m C 5 and

b D 8n C 6. We can now use these in Q2.

Important Note: In the proof, we cannot use the integer k in Q2 since we have

not proven that such an integer exists. This is why we used the letter m in statement

P 2. The goal is to prove that the integer k exists.

We can now proceed as followings:

.a C b/ � 3 D .8m C 5/ C .8n C 6/ � 3

D 8m C 8n C 8

D 8.m C n C 3/

Since the integers are closed under addition, we conclude that .m C n C 3/ is an

integer and so the last equation implies that 8 divides .a C b/ � 3. We can now

write a proof. The following proof is written according to the writing guidelines in

Appendix A.

Proposition 2.1. For all integers a and b, if a � 5 .mod 8/ and b � 6 .mod 8/,

then .a C b/ � 3 .mod 8/.

Proof. We assume that a and b are integers and that a � 5 .mod 8/ and b �
6 .mod 8/. We will prove that .a C b/ � 3 .mod 8/. From the assumptions, we

conclude that

8 divides .a � 5/ and 8 divides .b � 6/:

So there exist integers m and n such that

a � 5 D 8m and b � 6 D 8n:

Solving these equations for a and b, we obtain a D 8m C 5 and b D 8n C 6. We

can now substitute for a and b in the expression .a C b/ � 3. This gives

.a C b/ � 3 D .8m C 5/ C .8n C 6/ � 3

D 8m C 8n C 8

D 8.m C n C 3/
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Since the integers are closed under addition, we conclude that .m C n C 3/ is

an integer and so the last equation implies that 8 divides .a C b/ � 3. So by

the definition of congruence, we can conclude that .a C b/ � 3 .mod 8/. This

proves that for all integers a and b, if a � 5 .mod 8/ and b � 6 .mod 8/, then

.a C b/ � 3 .mod 8/. �

Note: This shows a typical way to construct and write a direct proof of a propo-

sition or theorem. We will not be going into this much detail on the construction

process in all of the results proved in this book. In fact, most textbooks do not do

this. What they most often show is only the final product as shown in the preceding

proof. Do not be fooled that this is the way that proofs are constructed. Construct-

ing a proof often requires trial and error and because of this, it is always a good

idea to write down what is being assumed and what it is we are trying to prove.

Then be willing to work backwards from what it is to be proved and work forwards

from the assumptions. The hard part is often connecting the forward process to

the backward process. This becomes extremely difficult if we do not write things

down and try to work only in our heads.

We sometimes think that a proposition is true and attempt to write a proof. If we

get stuck, we need to consider that a possible reason for this is that the proposition

is actually false. Consider the following proposition.

Proposition 2.2. For each integer n, if 7 divides
�

n2 � 4
�

, then 7 divides .n � 2/.

If we think about starting a a proof, we would let n be an integer, assume that 7

divides
�

n2 � 4
�

and from this assumption, try to prove that 7 divides .n�2/. That

is, we would assume that there exists an integer k such that n2 � 4 D 7k and try to

prove that there exists an integer m such that n � 2 D 7m. From the assumption,

we can using factoring and conclude that

.n � 2/.n C 2/ D 7k:

There does not seem to be a direct way to prove that there is an integer m such

that n � 2 D 7m. So we start looking for examples of integers n such that 7

divides
�

n2 � 4
�

and see if 7 divides .n � 2/ for these examples. After trying a few

examples, we find that for n D 0 and n D 5, 7 divides
�

n2 � 4
�

. (There are many

other such values for n.) For n D 5, we see that

n2 � 4 D 21 D 7 � 3 and n � 2 D 3:

However, 7 does not divide 3. This shows that for n D 5, the hypothesis of Propo-

sition 2.2 is true and the conclusion is false. This is a counterexample for the

proposition and proves that Proposition 2.2 is false.
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Note: This is the standard way to prove a conditional statement is false. Find an

example (called a counterexample) in which the hypothesis is true and the conclu-

sion is false. Sometimes, even though a proposition is false, we can modify the

statement of the proposition and create a new true proposition. We can do this

for Proposition 2.2 once we have studied more number theory. There is a theorem

from number theory that states:

For each prime number p and all integers a and b, if p divides ab, then p

divides a or p divides b.

This result is known as Euclid’s Lemma. Using this result, when we get to the

part where we conclude that .n � 2/.n C 2/ D 7k, we can conclude that 7 divides

.n � 2/.n C 2/ and hence, 7 divides n � 2/ or 7 divides .n C 2/. So we would have

the following true proposition.

Proposition. For each integer n, if 7 divides
�

n2 � 4
�

, then 7 divides .n � 2/ or 7

divides .n C 2/.

2.2 Direct Proofs Involving Sets

One of the most basic types of proofs involving sets is to prove that one set is a

subset of another set. If S and T are both subsets of some universal set U , to prove

that S is a subset of T , we need to prove that

For each element x in U , if x 2 S , then x 2 T .

When we have to prove something that involves a universal quantifier, we fre-

quently use a method that can be called the choose-an-element method. The key

is that we have to prove something about all elements in Z. We can then add some-

thing to the forward process by choosing an arbitrary element from the set S . This

does not mean that we can choose a specific element of S . Rather, we must give

the arbitrary element a name and use only the properties it has by being a member

of the set S .

The truth of the next proposition may be clear, but it is included to illustrate the

process of proving one set is a subset of another set. In this proposition, the set S

is the set of all integers that are a multiple of 6. So when we “choose” an element

from S , we are not selecting a specific element in S (such as 12 or 24), but rather

we are selecting an arbitrary element of S and so the only thing we can assume is

that the element is a multiple of 6.



Chapter 2. Direct Proofs 11

Proposition 2.3. Let S be the set of all integers that are multiples of 6, and let T be

the set of all even integers. Then S is a subset of T.

Proof. Let S be the set of all integers that are multiples of 6, and let T be the set

of all even integers. We will show that S is a subset of T by showing that if an

integer x is an element of S , then it is also an element of T .

Let x 2 S . (Note: The use of the word “let” is often an indication that the we

are choosing an arbitrary element.) This means that x is a multiple of 6. Therefore,

there exists an integer m such that

x D 6m:

Since 6 D 2 � 3, this equation can be written in the form

x D 2.3m/:

By closure properties of the integers, 3m is an integer. Hence, this last equation

proves that x must be even. Therefore, we have shown that if x is an element of S ,

then x is an element of T , and hence that S � T . �

One way to prove that two sets are equal is to prove that each one is a subset of

the other one. This is illustrated in the next proposition.

Proposition 2.4. Let A and B be subsets of some universal sets. Then A � B D
A \ Bc .

Proof. Let A and B be subsets of some universal set. We will prove that A � B D
A \ Bc by proving that each set is a subset of the other set. We will first prove

that A � B � A \ Bc . Let x 2 A � B . We then know that x 2 A and x … B .

However, x … B implies that x 2 Bc. Hence, x 2 A and x 2 Bc , which means

that x 2 A \ Bc . This proves that A � B � A \ Bc .

To prove that A \ Bc � A � B , we let y 2 A \ Bc . This means that y 2 A

and y 2 Bc , and hence, y 2 A and y … B . Therefore, y 2 A � B and this proves

that A \ Bc � A � B . Since we have proved that each set is a subset of the other

set, we have proved that A � B D A \ Bc. �
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2.3 Practice Problems for Chapter 2

1. Use a counterexample to prove the following statement is false.

For all integers a and b, if 5 divides a or 5 divides b, then 5 divides

.5a C b/.

2. Construct a table of values for
�

3m2 C 4m C 6
�

using at least six different

integers for m. Make one-half of the values for m even integers and the other

half odd integers. Is the following proposition true or false?

If m is an odd integer, then
�

3m2 C 4m C 6
�

is an odd integer.

Justify your conclusion. (If the proposition is true, then write a proof of the

proposition. If the proposition is false, provide an example of an odd integer

for which
�

3m2 C 4m C 6
�

is an even integer.)

3. The Pythagorean Theorem for right triangles states that if a and b are the

lengths of the legs of a right triangle and c is the length of the hypotenuse,

then a2 C b2 D c2 . For example, if a D 5 and b D 12 are the lengths of the

two sides of a right triangle and if c is the length of the hypotenuse, then the

c2 D 52 C 122 and so c2 D 169. Since c is a length and must be positive,

we conclude that c D 13.

Construct and provide a well-written proof for the following proposition.

Proposition. If m is a real number and m, m C 1, and m C 2 are the lengths

of the three sides of a right triangle, then m D 3.

4. Let n be a natural number and let a, b, c, and d be integers. Prove each of

the following.

(a) If a � b .mod n/ and c � d .mod n/, then

.a C c/ � .b C d/ .mod n/.

(b) If a � b .mod n/ and c � d .mod n/, then ac � bd .mod n/.

5. One way to prove that two sets are equal is to prove that each one is a subset

of the other one. Consider the following proposition:

Proposition. Let A and B be subsets of some universal set. Then

A � .A � B/ D A \ B .

Prove this proposition is true or give a counterexample to prove it is false.
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Using Logical Equivalencies in

Proofs

It is sometimes difficult to construct a direct proof of a conditional statement. For-

tunately, there are certain logical equivalencies in Theorem 1.1 on page 5 that can

be used to justify some other methods of proof of a conditional statement. Know-

ing that two expressions are logically equivalent tells us that if we prove one, then

we have also proven the other. In fact, once we know the truth value of a statement,

then we know the truth value of any other statement that is logically equivalent to

it.

3.1 Using the Contrapositive

One of the most useful logical equivalencies to prove a conditional statement is

that a conditional statement P ! Q is logically equivalent to its contrapositive,

:Q ! :P . This means that if we prove the contrapositive of the conditional

statement, then we have proven the conditional statement. The following are some

important points to remember.

� A conditional statement is logically equivalent to its contrapositive.

� Use a direct proof to prove that :Q ! :P is true.

� Caution: One difficulty with this type of proof is in the formation of correct

negations. (We need to be very careful doing this.)

13
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� We might consider using a proof by contrapositive when the statements P

and Q are stated as negations.

We will use the following proposition to illustrate how the contrapositive of a

conditional statement can be used in a proof.

Proposition 3.1. For each integer n, if n2 is an even integer, then n is an even

integer.

Proof. We will prove this result by proving the contrapositive of the statement,

which is

For each integer n, if n is an odd integer, then n2 is an odd integer.

So we assume that n is an odd integer and prove that n2 is an odd integer. Since n

is odd, there exists an integer k such that n D 2k C 1. Hence,

n2 D .2k C 1/2

D 4k2 C 4k C 1

D 2
�

2k2 C 2k
�

C 1

Since the integers are closed under addition and multiplication,
�

2k2 C 2k
�

is an

integer and so the last equation proves that n2 is an odd integer. This proves that

for all integers n, if n is an odd integer, then n2 is a n odd integer. Since this is the

contrapositive of the proposition, we have completed a proof of the proposition.

�

3.2 Using Other Logical Equivalencies

There are many logical equivalencies, but fortunately, only a small number are fre-

quently used when trying to construct and write proofs. Most of these are listed in

Theorem 1.1 on page 5. We will illustrate the use of one of these logical equiva-

lencies with the following proposition:

For all real numbers a and b, if a ¤ 0 and b ¤ 0, then ab ¤ 0.

First, notice that the hypothesis and the conclusion of the conditional statement are

stated in the form of negations. This suggests that we consider the contrapositive.

Care must be taken when we negate the hypothesis since it is a conjunction. We

use one of De Morgan’s Laws as follows:

: .a ¤ 0 ^ b ¤ 0/ � .a D 0/ _ .b D 0/ :



Chapter 3. Using Logical Equivalencies in Proofs 15

So the contrapositive is:

For all real numbers a and b, if ab D 0, then a D 0 or b D 0.

The contrapositive is a conditional statement in the form X ! .Y _ Z/. The

difficulty is that there is not much we can do with the hypothesis .ab D 0/ since

we know nothing else about the real numbers a and b. However, if we knew that a

was not equal to zero, then we could multiply both sides of the equation ab D 0 by
1

a
. This suggests that we consider using the following logical equivalency based

on a result in Theorem 1.1 on page 5:

X ! .Y _ Z/ � .X ^ :Y / ! Z:

Proposition 3.2. For all real numbers a and b, if a ¤ 0 and b ¤ 0, then ab ¤ 0.

Proof. We will prove the contrapositive of this proposition, which is

For all real numbers a and b, if ab D 0, then a D 0 or b D 0.

This contrapositive, however, is logically equivalent to the following:

For all real numbers a and b, if ab D 0 and a ¤ 0, then b D 0.

To prove this, we let a and b be real numbers and assume that ab D 0 and a ¤ 0.

We can then multiply both sides of the equation ab D 0 by
1

a
. This gives

1

a
.ab/ D 1

a
� 0:

We now use the associative property on the left side of this equation and simplify

both sides of the equation to obtain
�

1

a
� a

�

b D 0

1 � b D 0

b D 0

Therefore, b D 0 and this proves that for all real numbers a and b, if ab D 0 and

a ¤ 0, then b D 0. Since this statement is logically equivalent to the contrapositive

of the proposition, we have proved the proposition. �
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3.3 Proofs of Biconditional Statements

One of the logical equivalencies in Theorem 1.1 on page 5 is the following one for

biconditional statements.

.P $ Q/ � .P ! Q/ ^ .Q ! P / :

This logical equivalency suggests one method for proving a biconditional statement

written in the form “P if and only if Q.” This method is to construct separate

proofs of the two conditional statements P ! Q and Q ! P .

We will illustrate this with a proposition about right triangles.

Recall that the Pythagorean Theorem for right triangles states that if a and b are

the lengths of the legs of a right triangle and c is the length of the hypotenuse, then

a2 Cb2 D c2. We also know that the area of any triangle is one-half the base times

the altitude. So for the right triangle we have described, the area is A D 1

2
ab.

Proposition 3.3. Suppose that a and b are the lengths of the legs of a right triangle

and c is the length of the hypotenuse. This right triangle is an isosceles triangle if

and only if the area of the right triangle is
1

4
c2.

Proof. We assume that we have a right triangle where a and b are the lengths of

the legs of a right triangle and c is the length of the hypotenuse. We will prove that

this right triangle is an isosceles triangle if and only if the area of the right triangle

is
1

4
c2 by proving the two conditional statements associated with this biconditional

statement.

We first prove that if this right triangle is an isosceles triangle, then the area of

the right triangle is
1

4
c2 . So we assume the right triangle is an isosceles triangle.

This means that a D b, and consequently, A D 1

2
a2. Using the Pythagorean

Theorem, we see that

c2 D a2 C a2 D 2a2:

Hence, a2 D 1

2
c2 , and we obtain A D 1

2
a2 D 1

4
c2. This proves that if this right

triangle is an isosceles triangle, then the area of the right triangle is
1

4
c2 .

We now prove the converse of the first conditional statement. So we assume

the area of this isosceles triangle is A D 1

4
c2, and will prove that a D b. Since the
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area is also
1

2
ab, we see that

1

4
c2 D 1

2
ab

c2 D 2ab

We now use the Pythagorean Theorem to conclude that a2 C b2 D 2ab. So the

last equation can be rewritten as follows:

a2 � 2ab C b2 D 0

.a � b/2 D 0:

The last equation implies that a D b and hence the right triangle is an isosceles

triangle. This proves that if the area of this right triangle is A D 1

4
c2 , then the right

triangle is an isosceles triangle.

Since we have proven both conditional statements, we have proven that this

right triangle is an isosceles triangle if and only if the area of the right triangle is
1

4
c2. �

3.4 Practice Problems for Chapter 3

1. Is the following proposition true or false?

For all integers a and b, if ab is even, then a is even or b is even.

Justify your conclusion by writing a proof if the proposition is true or by

providing a counterexample if it is false.

2. Are the following statements true or false? Justify your conclusions.

(a) For each a 2 Z, if a � 2 .mod 5/, then a2 � 4 .mod 5/.

(b) For each a 2 Z, if a2 � 4 .mod 5/, then a � 2 .mod 5/.

(c) For each a 2 Z, a � 2 .mod 5/ if and only if a2 � 4 .mod 5/.
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3. A real number x is defined to be a rational number provided

there exist integers m and n with n ¤ 0 such that x D m

n
:

A real number that is not a rational number is called an irrational number.

It is known that if x is a positive rational number, then there exist positive

integers m and n with n ¤ 0 such that x D m

n
.

Is the following proposition true or false? Explain.

Proposition. For each positive real number x, if x is irrational, then
p

x is

irrational.
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Proof by Contradiction

4.1 Explanation and an Example

Another method of proof that is frequently used in mathematics is a proof by

contradiction. This method is based on the fact that a statement X can only be

true or false (and not both). The idea is to prove that the statement X is true by

showing that it cannot be false. This is done by assuming that X is false and

proving that this leads to a contradiction. (The contradiction often has the form

.R ^ :R/, where R is some statement.) When this happens, we can conclude that

the assumption that the statement X is false is incorrect and hence X cannot be

false. Since it cannot be false, then X must be true.

A logical basis for the contradiction method of proof is the tautology

Œ:X ! C � ! X;

where X is a statement and C is a contradiction. The following truth table estab-

lishes this tautology.

X C :X :X ! C .:X ! C / ! X

T F F T T

F F T F T

This tautology shows that if :X leads to a contradiction, then X must be true. The

previous truth table also shows that the statement :X ! C is logically equiva-

lent to X . This means that if we have proved that :X leads to a contradiction,

then we have proved statement X . So if we want to prove a statement X using a

19
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proof by contradiction, we assume that :X is true and show that this leads to a

contradiction.

When we try to prove the conditional statement, “If P then Q” using a proof

by contradiction, we must assume that P ! Q is false and show that this leads to

a contradiction. Since we are assuming the conditional statement is false, we are,

in effect, assuming its negation is true. According to Theorem 1.1 on page 5,

: .P ! Q/ � P ^ :Q:

We will illustrate the process of a proof by contradiction with the following propo-

sition.

Proposition 4.1. For each real number x, if 0 < x < 1, then
1

x.1 � x/
� 4.

Proof. We will use a proof by contradiction. So we assume that the proposition is

false, or that there exists a real number x such that 0 < x < 1 and

1

x.1 � x/
< 4: (1)

We note that since 0 < x < 1, we can conclude that x > 0 and that .1 � x/ > 0.

Hence, x.1 � x/ > 0 and if we multiply both sides of inequality (1) by x.1 � x/,

we obtain

1 < 4x.1 � x/:

We can now use algebra to rewrite the last inequality as follows:

1 < 4x � 4x2

4x2 � 4x C 1 < 0

.2x � 1/2 < 0

However, .2x � 1/ is a real number and the last inequality says that a real number

squared is less than zero. This is a contradiction since the square of any real number

must be greater than or equal to zero. Hence, the proposition cannot be false, and

we have proved that for each real number x, if 0 < x < 1, then
1

x.1 � x/
� 4. �
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4.2 Proving that Something Does Not Exist

In mathematics, we sometimes need to prove that something does not exist or that

something is not possible. Instead of trying to construct a direct proof, it is some-

times easier to use a proof by contradiction so that we can assume that the some-

thing exists.

We will illustrate this by proving the following proposition. Notice that the

conclusion of the proposition involves trying to prove that an integer with a certain

property does not exist. If we use a proof by contradiction, we can assume that

such an integer z exists. This gives us more with which to work.

Proposition 4.2. For all integers x and y, if x and y are odd integers, then there

does not exist an integer z such that x2 C y2 D z2.

Proof. We will use a proof by contradiction. So we assume that the proposition is

false or that there exist integers x and y such that x and y are odd and there exists

an integer z such that x2 C y2 D z2. Since x and y are odd, there exist integers m

and n such that x D 2m C 1 and y D 2n C 1. So we get

x2 C y2 D .2m C 1/2 C .2n C 1/2

D 4m2 C 4m C 1 C 4n2 C 4n C 1

D 2
�

2m2 C 2m C 2n2 C 2n C 1
�

(1)

Since the integers are closed under addition and multiplication, we see that

2
�

2m2 C 2m C 2n2 C 2n C 1
�

is an integer, and so the last equation shows that

x2 C y2 is an even integer. Hence, z2 is even since z2 D x2 C y2. So using the

result in Proposition 3.1 on page 14, we can conclude that z is even and that there

exists an integer k such that z D 2k. Now, using equation (1) above, we see that

z2 D 2
�

2m2 C 2m C 2n2 C 2n C 1
�

.2k/2 D 2
�

2m2 C 2m C 2n2 C 2n C 1
�

4k2 D 2
�

2m2 C 2m C 2n2 C 2n C 1
�

Dividing both sides of the last equation by 2, we obtain

4k2 D 2
�

2m2 C 2m C 2n2 C 2n C 1
�

2k2 D 2
�

m2 C m C n2 C n
�

C 1

However, the left side of the last equation is an even integer and the right side is an

odd integer. This is a contradiction, and so the proposition cannot be false. Hence,
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we have proved that for all integers x and y, if x and y are odd integers, then there

does not exist an integer z such that x2 C y2 D z2. �

4.3 Rational and Irrational Numbers

One of the most important ways to classify real numbers is as a rational number

or an irrational number. Following is the definition of rational (and irrational)

numbers given in Problem (3) on page 18.

Definition. A real number x is defined to be a rational number provided that

there exist integers m and n with n ¤ 0 such that x D m

n
. A real number that

is not a rational number is called an irrational number.

This may seem like a strange distinction because most people are quite familiar

with the rational numbers (fractions) but the irrational numbers seem a bit unusual.

However, there are many irrational numbers such as
p

2,
p

3,
3
p

2, � , and the

number e.

We use the symbol Q to stand for the set of rational numbers. There is no

standard symbol for the set of irrational numbers. Perhaps one reason for this is

because of the closure properties of the rational numbers, namely that the rational

numbers Q are closed under addition, subtraction, multiplication, and division by

nonzero rational numbers. This means that if x; y 2 Q, then

� x C y, x � y, and xy are in Q; and

� If y ¤ 0, then
x

y
is in Q.

The basic reasons for these facts are that if we add, subtract, multiply, or divide

two fractions, the result is a fraction. One reason we do not have a symbol for

the irrational numbers is that the irrational numbers are not closed under these

operations. For example,
p

2 is irrational and we see that

p
2
p

2 D 2 and

p
2p
2

D 1:

This shows that the product of irrational numbers can be rational and the quotient

of irrational numbers can be rational.
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It is also important to realize that every integer is a rational number since any

integer can be written as a fraction. For example, we can write 3 D 3

1
. In general,

if n 2 Z, then n D n

1
, and hence, n 2 Q.

Because the rational numbers are closed under the standard operations and the

definition of an irrational number simply says that the number is not rational, we

often use a proof by contradiction to prove that a number is irrational. This is

illustrated in the next proposition.

Proposition 4.3. For all real numbers x and y, if x is rational and x ¤ 0 and y is

irrational, then x � y is irrational.

Proof. We will use a proof by contradiction. So we assume that there exist real

numbers x and y such that x is rational, x ¤ 0, y is irrational, and x � y is rational.

Since x ¤ 0, we can divide by x, and since the rational numbers are closed under

division by nonzero rational numbers, we know that
1

x
2 Q. We now know that

x � y and
1

x
are rational numbers and since the rational numbers are closed under

multiplication, we conclude that

1

x
� .xy/ 2 Q:

However,
1

x
� .xy/ D y and hence, y must be a rational number. Since a real num-

ber cannot be both rational and irrational, this is a contradiction to the assumption

that y is irrational. We have therefore proved that for all real numbers x and y, if

x is rational and x ¤ 0 and y is irrational, then x � y is irrational. �

4.4 Practice Problems for Chapter 4

1. (a) Determine at least five different integers that are congruent to 2 modulo

4. Are any of these integers congruent to 3 modulo 6?

(b) Is the following proposition true or false? Justify your conclusion with

a counterexample (if it is false) or a proof (if it is true).

Propostion. For each integer n, if n � 2 .mod 4/, then

n 6� 3 .mod 6/.
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2. For the following, it may be useful to use the facts that the set of rational

numbers Q is closed under addition, subtraction, multiplication, and division

by nonzero rational numbers.

Prove the following proposition:

Proposition. For all real numbers x and y, if x is rational and x ¤ 0

and y is irrational, then x C y is irrational.

3. Is the base 2 logarithm of 3, log2.3/, a rational or irrational number? Justify

your conclusion.

4. Is the real number
p

2 C
p

3 a rational or irrational number? Justify your

conclusion.
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Using Cases in Proofs

The method of using cases in a proof is often used when the hypothesis of a propo-

sition is a disjunction. This is justified by the logical equivalency

Œ.P _ Q/ ! R� � Œ.P ! R/ ^ .Q ! R/� :

This is one of the logical equivalencies in Theorem 1.1 on page 5. In some other

situations when we are trying to prove a proposition or a theorem about an ele-

ment x in some set U , we often run into the problem that there does not seem to

be enough information about x to proceed. For example, consider the following

proposition:

Proposition 5.1. If n is an integer, then
�

n2 C n
�

is an even integer.

If we were trying to write a direct proof of this proposition, the only thing we could

assume is that n is an integer. This is not much help. In a situation such as this, we

will sometimes construct our own cases to provide additional assumptions for the

forward process of the proof. Cases are usually based on some common properties

that the given element may or may not possess. The cases must be chosen so that

they exhaust all possibilities for the object in the hypothesis of the proposition. For

the Proposition 5.1, we know that an integer must be even or it must be odd. We

can thus use the following two cases for the integer n:

� The integer n is an even integer; or

� The integer n is an odd integer.

25
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Proposition 5.1. If n is an integer, then
�

n2 C n
�

is an even integer.

Proof. We assume that n is an integer and will prove that
�

n2 C n
�

. Since we

know that any integer must be even or odd, we will use two cases. The first is that

n is an even integer, and the second is that n is an odd integer.

In the case where n is an even integer, there exists an integer m such that

n D 2m:

Substituting this into the expression n2 C n yields

n2 C n D .2m/2 C 2m

D 4m2 C 2m

D 2.2m2 C m/

By the closure properties of the integers, 2m2 C m is an integer, and hence n2 C n

is even. So this proves that when n is an even integer, n2 C n is an even integer.

In the case where n is an odd integer, there exists an integer k such that

n D 2k C 1:

Substituting this into the expression n2 C n yields

n2 C n D .2k C 1/2 C .2k C 1/

D
�

4k2 C 4k C 1
�

C 2k C 1

D
�

4k2 C 6k C 2
�

D 2
�

2k2 C 3k C 1
�

By the closure properties of the integers, 2k2 C 3k C 1 is an integer, and hence

n2 C n is even. So this proves that when n is an odd integer, n2 C n is an even

integer.

Since we have proved that n2 C n is even when n is even and when n is odd,

we have proved that if n is an integer, then
�

n2 C n
�

is an even integer. �

5.1 Some Common Situations to Use Cases

When using cases in a proof, the main rule is that the cases must be chosen so

that they exhaust all possibilities for an object x in the hypothesis of the original

proposition. Following are some common uses of cases in proofs.
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When the hypothesis is, Case 1: n is an even integer.

“n is an integer.” Case 2: n is an odd integer.

When the hypothesis is, Case 1: m and n are even.

“m and n are integers.” Case 2: m is even and n is odd.

Case 3: m is odd and n is even.

Case 4: m and n are both odd.

When the hypothesis is, Case 1: x is rational.

“x is a real number.” Case 2: x is irrational.

When the hypothesis is, Case 1: x D 0. OR Case 1: x > 0.

“x is a real number.” Case 2: x ¤ 0. Case 2: x D 0.

Case 3: x < 0.

When the hypothesis is, Case 1: a D b. OR Case 1: a > b.

“a and b are real Case 2: a ¤ b. Case 2: a D b.

numbers.” Case 3: a < b.

5.2 Using Cases with the Division Algorithm

An important result for the set of integers is known as the Division Algorithm. This

is somewhat of a misnomer since it is stated in terms of addition and multiplica-

tion. The reason for this is that the set of integers is closed under addition and

multiplication but is not closed under division. However, we have known for some

time that when we divide one integer by another nonzero integer, we get a quotient

and a remainder. For example, when we divide 337 by 6, we often write

337

6
D 56 C 1

6
:

When we multiply both sides of this equation by 6, we get

337 D 6 � 56 C 1:

When we are working within the system of integers, the second equation is pre-

ferred over the first since the second one uses only integers and the operations of
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addition and multiplication, and the integers are closed under addition and multi-

plication. Following is a complete statement of the Division Algorithm.

The Division Algorithm

For all integers a and b with b > 0, there exist unique integers q and r such

that

a D bq C r and 0 � r < b:

So when we speak of the quotient and the remainder when we “divide an integer

a by the positive integer b,” we will always mean the quotient .q/ and the re-

mainder .r/ guaranteed by the Division Algorithm. So the remainder r is the least

nonnegative integer such that there exists an integer (quotient) q with a D bq C r .

The Division Algorithm can sometimes be used to construct cases that can be

used to prove a statement that is true for all integers. We have done this when we

divided the integers into the even integers and the odd integers since even integers

have a remainder of 0 when divided by 2 and odd integers have a remainder of 1

when divided by 2.

Sometimes it is more useful to divide the integer a by an integer other than 2.

For example, if a is divided by 3, there are three possible remainders: 0, 1, and

2. If a is divided by 4, there are four possible remainders: 0, 1, 2, and 3. The

remainders form the basis for the cases.

If the hypothesis of a proposition is that “n is an integer,” then we can use the

Division Algorithm to claim that there are unique integers q and r such that

n D 3q C r and 0 � r < 3:

We can then divide the proof into the following three cases: (1) r D 0; (2) r D 1;

and (3) r D 2. This is done in Proposition 5.2.

Proposition 5.2. If n is an integer, then 3 divides n3 � n.

Proof. Let n be an integer. We will show that 3 divides n3 � n by examining the

three cases for the remainder when n is divided by 3. By the Division Algorithm,

there exist unique integers q and r such that

n D 3q C r , and 0 � r < 3:

This means that we can consider the following three cases: (1) r D 0; (2) r D 1;

and (3) r D 2.
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In the case where r D 0, we have n D 3q. By substituting this into the

expression n3 � n, we get

n3 � n D .3q/3 � .3q/

D 27q3 � 3q

D 3
�

9q3 � q
�

:

Since
�

9q3 � q
�

is an integer, the last equation proves that 3 j
�

n3 � n
�

.

In the second case, r D 1 and n D 3q C 1. When we substitute this into
�

n3 � n
�

, we obtain

n3 � n D .3q C 1/3 � .3q C 1/

D
�

27q3 C 27q2 C 9q C 1
�

� .3q C 1/

D 27q3 C 27q2 C 6q

D 3
�

9q3 C 9q2 C 2q
�

:

Since
�

9q3 C 9q2 C 2q
�

is an integer, the last equation proves that 3 j
�

n3 � n
�

.

The last case is when r D 2. The details for this case are part of Problem (2).

Once this case is completed, we will have proved that 3 divides n3 � n in all three

cases. Hence, we may conclude that if n is an integer, then 3 divides n3 � n. �

5.3 Practice Problems for Chapter 5

1. Consider the following proposition:

Proposition. For each integer a, if 3 divides a2, then 3 divides a.

(a) Write the contrapositive of this proposition.

(b) Prove the proposition by proving its contrapositive. Hint: Consider

using cases based on the Division Algorithm using the remainder for

“division by 3.” There will be two cases since the hypothesis of the

contrapositive is, “3 does not divide a.”

2. Complete the details for the proof of Case 3 of Proposition 5.2.

3. Is the following proposition true or false? Justify your conclusion with a

counterexample or a proof.

Proposition. For each integer n, if n is odd, then 8 divides n2 � 1.
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Mathematical Induction

One of the defining characteristics of the set of natural numbers N is the so-called

Principle of Mathematical Induction.

The Principle of Mathematical Induction

If T is a subset of N such that

1. 1 2 T, and

2. For every k 2 N, if k 2 T, then .k C 1/ 2 T,

then T D N.

In many mathematics courses, this principle is given as an axiom for the set

of natural numbers. Although we will not do so here, the Principle of Mathemati-

cal Induction can be proved by using the so-called Well-Ordering Principle, which

states that every non-empty subset of the natural numbers contains a least element.

So in some courses, the Well-Ordering Principle is stated as an axiom of the natural

numbers. It should be noted, however, that it is also possible to assume the Princi-

ple of Mathematical Induction as an axiom and use it to prove the Well-Ordering

Principle. We will only use the Principle of Mathematical Induction in this book.

30
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6.1 Using the Principle of Mathematical Induction

The primary use of the Principle of Mathematical Induction is to prove statements

of the form

.8n 2 N/ .P .n// ;

where P.n/ is some open sentence. Recall that a universally quantified statement

like the preceding one is true if and only if the truth set T of the open sentence

P.n/ is the set N. So our goal is to prove that T D N, which is the conclusion of

the Principle of Mathematical Induction. To verify the hypothesis of the Principle

of Mathematical Induction, we must

1. Prove that 1 2 T. That is, prove that P.1/ is true.

2. Prove that if k 2 T, then .k C 1/ 2 T. That is, prove that if P.k/ is true,

then P.k C 1/ is true.

The first step is called the basis step or the initial step, and the second step is

called the inductive step. This means that a proof by mathematical induction will

have the following form:

Procedure for a Proof by Mathematical Induction

To prove: .8n 2 N/ .P .n//

Basis step: Prove P.1/.

Inductive step: Prove that for each k 2 N,

if P.k/ is true, then P.k C 1/ is true.

We can then conclude that P.n/ is true for all n 2 N.

Note that in the inductive step, we want to prove that the conditional statement “for

each k 2 N, if P.k/ then P.k C 1/” is true. So we will start the inductive step by

assuming that P.k/ is true. This assumption is called the inductive assumption

or the inductive hypothesis.

The key to constructing a proof of the inductive step is to discover how P.k C 1/

is related to P.k/ for an arbitrary natural number k. This is why it is important to

write down explicitly what P.k/ and P.k C 1/ are within the proof. Notice how

this is done in the proof of the following proposition.
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Proposition 6.1. For each natural number n,

12 C 22 C � � � C n2 D n.n C 1/.2n C 1/

6
:

Proof. We will use a proof by mathematical induction. For each natural number

n, we let P.n/ be

12 C 22 C � � � C n2 D n.n C 1/.2n C 1/

6
:

We first prove that P.1/ is true. Notice that
1 .1 C 1/ .2 � 1 C 1/

6
D 1. This shows

that

12 D 1 .1 C 1/ .2 � 1 C 1/

6
;

which proves that P.1/ is true.

For the inductive step, we prove that for each k 2 N, if P.k/ is true, then P.k C1/

is true. So let k be a natural number and assume that P.k/ is true. That is, assume

that

12 C 22 C � � � C k2 D k.k C 1/.2k C 1/

6
: (1)

The goal now is to prove that P .k C 1/ is true. That is, it must be proved that

12 C 22 C � � � C k2 C .k C 1/2 D .k C 1/ Œ.k C 1/ C 1� Œ2.k C 1/ C 1�

6

D .k C 1/ .k C 2/ .2k C 3/

6
: (2)

To do this, we add .k C 1/2 to both sides of equation (1) and algebraically rewrite

the right side of the resulting equation. This gives

12 C 22 C � � � C k2 C .k C 1/2 D k.k C 1/.2k C 1/

6
C .k C 1/2

D k.k C 1/.2k C 1/ C 6.k C 1/2

6

D .k C 1/ Œk.2k C 1/ C 6.k C 1/�

6

D
.k C 1/

�

2k2 C 7k C 6
�

6

D .k C 1/.k C 2/.2k C 3/

6
:
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Comparing this result to equation (2), we see that if P.k/ is true, then P.k C 1/ is

true. Hence, the inductive step has been established, and by the Principle of Mathe-

matical Induction, we have proved that for each natural number n,

12 C 22 C � � � C n2 D n.n C 1/.2n C 1/

6
. �

6.2 The Extended Principle of Mathematical Induction

A little exploration shows that the following proposition appears to be true.

Proposition 6.2. For each integer n with n � 4, nŠ > n4.

We would like to use mathematical induction to prove this, but the proposition

has the added assumption that n � 4. So to do this, we use a slight modifica-

tion of the Principle of Mathematical Induction called the Extended Principle of

Mathematical Induction.

The Extended Principle of Mathematical Induction

Let M be an integer. If T is a subset of Z such that

1. M 2 T, and

2. For every k 2 Z with k � M, if k 2 T, then .k C 1/ 2 T,

then T contains all integers greater than or equal to M. That is,

fn 2 Z j n � M g � T.

The primary use of the Principle of Mathematical Induction is to prove statements

of the form

.8n 2 Z; with n � M/ .P.n//;

where M is an integer and P.n/ is some open sentence. (In most induction proofs,

we will use a value of M that is greater than or equal to zero.) So our goal is to

prove that the truth set T of the predicate P.n/ contains all integers greater than or

equal to M. So to verify the hypothesis of the Extended Principle of Mathematical

Induction, we must

1. Prove that M 2 T. That is, prove that P.M/ is true.

2. Prove that for every k 2 Z with k � M, if k 2 T, then .k C 1/ 2 T. That is,

prove that if P.k/ is true, then P.k C 1/ is true.
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As before, the first step is called the basis step or the initial step, and the sec-

ond step is called the inductive step. This means that a proof using the Extended

Principle of Mathematical Induction will have the following form:

Using the Extended Principle of Mathematical Induction

Let M be an integer. To prove: .8n 2 Z with n � M / .P.n//

Basis step: Prove P.M/.

Inductive step: Prove that for every k 2 Z with k � M,

if P.k/ is true, then P.k C 1/ is true.

We can then conclude that P.n/ is true for all n 2 Z with n � M.

This is basically the same procedure as the one for using the Principle of Mathe-

matical Induction. The only difference is that the basis step uses an integer M other

than 1. For this reason, when we write a proof that uses the Extended Principle of

Mathematical Induction, we often simply say we are going to use a proof by math-

ematical induction. We will prove Proposition 6.2 using the Extended Principle of

Mathematical Induction.

Proposition 6.2. For each integer n with n � 4, nŠ > n4.

Proof. We will use a proof by mathematical induction. For this proof, we let

P.n/ be “nŠ > 2n.”

We first prove that P.4/ is true. Using n D 4, we see that 4Š D 24 and 24 D 16.

This means that 4Š > 24 and, hence, P .4/ is true.

For the inductive step, we prove that for all k 2 N with k � 4, if P.k/ is true,

then P.k C 1/ is true. So let k be a natural number greater than or equal to 4, and

assume that P.k/ is true. That is, assume that

kŠ > 2k: (1)

The goal is to prove that P.k C 1/ is true or that .k C 1/Š > 2kC1. Multiplying

both sides of inequality (1) by k C 1 gives

.k C 1/ � kŠ > .k C 1/ � 2k ; or

.k C 1/Š > .k C 1/ � 2k : (2)



Chapter 6. Mathematical Induction 35

Now, k � 4. Thus, k C 1 > 2, and hence .k C 1/ � 2k > 2 � 2k. This means that

.k C 1/ � 2k > 2kC1: (3)

Inequalities (2) and (3) show that

.k C 1/Š > 2kC1;

and this proves that if P.k/ is true, then P.k C 1/ is true. Thus, the inductive

step has been established, and so by mathematical induction, we have proved that

nŠ > 2n for each natural number n with n � 4. �

6.3 The Second Principle of Mathematical Induction

Let P.n/ be

n is a prime number or n is a product of prime numbers.

Suppose we would like to use induction to prove that P.n/ is true for all natural

numbers greater than 1. We have seen that the idea of the inductive step in a proof

by induction is to prove that if one statement in an infinite list of statements is true,

then the next statement must also be true. The problem here is that when we factor

a composite number, we do not get to the previous case. For example, if assume

that P.39/ is true and we want to prove that P.40/ is true, we could factor 40 as

40 D 2 �20. So the assumption that P.39/ is true does not help us prove that P.40/

is true. What we would like to do is use P.2/ and P.20/.

This work is intended to show the need for another principle of induction. In

the inductive step of a proof by induction, we assume one statement is true and

prove the next one is true. The idea of this new principle is to assume that all of the

previous statements are true and use this assumption to prove the next statement is

true. This is stated formally in terms of subsets of natural numbers in the Second

Principle of Mathematical Induction.
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The Second Principle of Mathematical Induction

Let M be an integer. If T is a subset of Z such that

1. M 2 T, and

2. For every k 2 Z with k � M, if fM; M C 1; : : : ; kg � T, then

.k C 1/ 2 T,

then T contains all integers greater than or equal to M. That is,

fn 2 Z j n � M g � T.

The primary use of mathematical induction is to prove statements of the form

.8n 2 Z; with n � M/ .P.n// ;

where M is an integer and P.n/ is some predicate. (For most proofs, M D 0

or M D 1. So our goal is to prove that the truth set T of the predicate P.n/

contains all integers greater than or equal to M . To use the Second Principle of

Mathematical Induction, we must

1. Prove that M 2 T. That is, prove that P.M/ is true.

2. Prove that for every k 2 N, if k � M and fM; M C 1; : : : ; kg � T, then

.k C 1/ 2 T. That is, prove that if P.M/; P.M C 1/; : : : ; P.k/ are true,

then P.k C 1/ is true.

As before, the first step is called the basis step or the initial step, and the

second step is called the inductive step. This means that a proof using the Second

Principle of Mathematical Induction will have the following form:

Using the Second Principle of Mathematical Induction

Let M be an integer. To prove: .8n 2 Z with n � M / .P.n//

Basis step: Prove P.M/.

Inductive step: Let k 2 Z with k � M . Prove that if

P.M/; P.M C 1/; : : : ; P.k/ are true, then

P.k C 1/ is true.

We can then conclude that P.n/ is true for all n 2 Z with n � M.
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We will use this procedure to prove the proposition to prove the following propo-

sition.

Proposition 6.3. Each natural number greater than 1 is either a prime number or

is a product of prime numbers.

Proof. We will use the Second Principle of Mathematical Induction. We let P.n/

be

n is either a prime number or n is a product of prime numbers.

For the basis step, P.2/ is true since 2 is a prime number.

To prove the inductive step, we let k be a natural number with k � 2. We assume

that P.2/; P.3/; : : : ; P.k/ are true. That is, we assume that each of the natural

numbers 2; 3; : : : ; k is a prime number or a product of prime numbers. The goal

is to prove that P.k C 1/ is true or that .k C 1/ is a prime number or a product of

prime numbers.

Case 1: If .k C 1/ is a prime number, then P.k C 1/ is true.

Case 2: If .k C 1/ is not a prime number, then .k C 1/ can be factored into a

product of natural numbers with each one being less than .k C 1/. That is, there

exist natural numbers a and b with

k C 1 D a � b; and 1 < a � k and 1 < b � k:

Using the inductive assumption, this means that P.a/ and P.b/ are both true.

Consequently, a and b are prime numbers or are products of prime numbers. Since

k C 1 D a � b, we conclude that .k C 1/ is a product of prime numbers. That is,

we conclude that P .k C 1/ is true. This proves the inductive step.

Hence, by the Second Principle of Mathematical Induction, we conclude that

P.n/ is true for all n 2 N with n � 2, and this means that each natural number

greater than 1 is either a prime number or is a product of prime numbers. �

6.4 Practice Problems for Chapter 6

1. (a) Calculate 1 C 3 C 5 C � � � C .2n � 1/ for several natural numbers n.
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(b) Based on your work in part (a), if n 2 N, make a conjecture about the

value of the sum 1 C 3 C 5 C � � � C .2n � 1/ D
n

P

j D1

.2j � 1/.

(c) Use mathematical induction to prove your conjecture in part (b).

2. Prove the following:

Proposition. For each natural number n, 3 divides 4n � 1 .mod 3/.

3. For which natural numbers n is 3n greater than 5 C 2n? State a proposition

(with an appropriate quantifier) and prove it.

4. The Fibonacci numbers are a sequence of natural numbers f1; f2; f3; : : : ; fn; : : :

defined recursively as follows:

� f1 D 1 and f2 D 1, and

� For each natural number n, fnC2 D fnC1 C fn.

In words, the recursion formula states that for any natural number n with

n � 3, the nth Fibonacci number is the sum of the two previous Fibonacci

numbers. So we see that

f3 D f2 C f1 D 1 C 1 D 2;

f4 D f3 C f2 D 2 C 1 D 3; and

f5 D f4 C f3 D 3 C 2 D 5:

(a) Calculate f6 through f20.

(b) Is every third Fibonacci number even? That is it true that for each

natural number n, f3n is even? Justify your conclusion.

(c) Is it true that for each natural number n with n � 2,

f1 C f3 C � � � C f2n�1 D fnC1 � 1? Justify your conclusion.

5. Prove the following proposition using mathematical induction.

Proposition. For each n 2 N with n � 8, there exist nonnegative

integers x and y such that n D 3x C 5y.

Suggestion: Use the Second Principle of Induction and have the basis step

be a proof that P.8/, P.9/, and P.10/ are true using an appropriate open

sentence for P.n/.



Chapter 7

Injective and Surjective

Functions

This chapter does not discuss a proof technique but applies some of the proof tech-

niques from earlier in the book to propositions and problems dealing with func-

tions, in particular, injections and surjections. These are concepts that some stu-

dents struggle with when they first study them in an introduction to proofs course.

So we give a few examples of such proofs in this chapter.

To understand the proofs discussed in this chapter, we need to understand func-

tions and the definitions of an injection (one-to-one function) and a surjection (onto

function). It is assumed that students have studied these concepts before, but the

definitions are stated below for reference.

7.1 Definitions and Notation

Definition. A function from a set A to a set B is a rule that associates with

each element x of the set A exactly one element of the set B . A function from

A to B is also called a mapping from A to B .

Function Notation. When we work with a function, we usually give it a name.

The name is often a single letter, such as f or g. If f is a function from the set A

to be the set B , we will write f W A ! B . This is simply shorthand notation for the

fact that f is a function from the set A to the set B . In this case, we also say that

f maps A to B .

39
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Definition. Let f W A ! B . (This is read, “Let f be a function from A

to B .”) The set A is called the domain of the function f , and we write

A D dom.f /. The set B is called the codomain of the function f , and we

write B D codom.f /.

If a 2 A, then the element of B that is associated with a is denoted by f .a/

and is called the image of a under f. If f .a/ D b, with b 2 B , then a is

called a preimage of b under f.

Some Function Terminology. When we have a function f W A ! B , we often

write y D f .x/. In this case, we consider x to be an unspecified object that can

be chosen from the set A, and we would say that x is the independent variable of

the function f and y is the dependent variable of the function f .

Definition. Let f W A ! B . The set ff .x/ j x 2 Ag is called the range of the

function f and is denoted by range .f /. The range of f is sometimes called

the image of the function f (or the image of A under f ).

The range of f W A ! B could equivalently be defined as follows:

range.f / D fy 2 B j y D f .x/ for some x 2 Ag:

Notice that this means that range.f / � codom.f / but does not necessarily mean

that range.f / D codom.f /. Whether we have this set equality or not depends on

the function f .

Definition. Let f W A ! B be a function from the set A to the set B . The

function f is called an injection provided that

for all x1; x2 2 A, if x1 ¤ x2, then f .x1/ ¤ f .x2/.

When f is an injection, we also say that f is a one-to-one function, or that

f is an injective function.

Notice that the condition that specifies that a function f is an injection is given

in the form of a conditional statement. As we shall see, in proofs, it is usually

easier to use the contrapositive of this conditional statement.
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Let f W A ! B.

“The function f is an injection” means that

� For all x1; x2 2 A, if x1 ¤ x2, then f .x1/ ¤ f .x2/; or

� For all x1; x2 2 A, if f .x1/ D f .x2/, then x1 D x2.

“The function f is not an injection” means that

� There exist x1; x2 2 A such that x1 ¤ x2 and f .x1/ D f .x2/.

Definition. Let f W A ! B be a function from the set A to the set B . The

function f is called a surjection provided that the range of f equals the

codomain of f . This means that

for every y 2 B , there exists an x 2 A such that f .x/ D y.

When f is a surjection, we also say that f is an onto function or that f maps

A onto B. We also say that f is a surjective function.

One of the conditions that specifies that a function f is a surjection is given in

the form of a universally quantified statement, which is the primary statement used

in proving a function is (or is not) a surjection.

Let f W A ! B.

“The function f is a surjection” means that

� range.f / D codom.f / D B; or

� For every y 2 B , there exists an x 2 A such that f .x/ D y.

“The function f is not a surjection” means that

� range.f / ¤ codom.f /; or

� There exists a y 2 B such that for all x 2 A, f .x/ ¤ y.

One last definition.
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Definition. A bijection is a function that is both an injection and a surjection.

If the function f is a bijection, we also say that f is one-to-one and onto

and that f is a bijective function.

7.2 Some Examples and Proofs

Many of us have probably heard in precalculus and calculus courses that a linear

function is a bijection. We prove this in the following proposition, but notice how

careful we are with stating the domain and codomain of the function.

Proposition 7.1. Let The function f W R ! R by f .x/ D mx C b for all x in R is

a bijection.

Proof. We let m be a nonzero real number and let b be a real number and define

f W R ! R by f .x/ D mx C b for all x in R. We will prove that f is a bijection

by proving it is both an injection and a surjection.

To prove that f is an injection, we let x1 and x2 be real numbers (hence, in

the domain of f ) and assume that f .x1/ D f .x2/. This means that mx1 C b D
mx2 C b. We can then subtract b from both sides of this equation and then divide

both sides by m since m ¤ 0 as follows:

mx1 C b D mx2 C b

mx1 D mx2

x1 D x2

So we have proved that for all x1; x2 2 R, if f .x1/ D f .x2/, then x1 D x2, and

hence, f is an injection.

To prove that f is a surjection, we choose a real number y in the codomain of

f . We need to prove that there exists an x 2 R such that f .x/ D y. Working

backward, we see that if mx C b D y, then x D y � b

m
(since m ¤ 0). We see that

x 2 R (the domain of f ) since the real numbers are closed under subtraction and
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division by nonzero real numbers. This is done as follows:

f .x/ D f

�

y � b

m

�

D m

�

y � b

m

�

C b

D .y � b/ C b

D b

This proves that for each y 2 R, there exists an x 2 R such that f .x/ D y, and

hence, f is a surjection.

Since we have proved that f is both an injection and a surjection, we have

proved that f is a bijection. �

We will now discuss some examples of functions that will illustrate why the

domain and the codomain of a function are just as important as the rule defining

the outputs of a function when we need to determine if the function is an injection

or a surjection.

Example 7.2 (The Importance of the Domain and Codomain)

Each of the following functions will have the same rule for computing the out-

puts corresponding to a given input. However, they will have different domains or

different codomains.

1. A Function that Is Neither an Injection nor a Surjection

Let f W R ! R be defined by f .x/ D x2 C 1. Notice that

f .2/ D 5 and f .�2/ D 5:

This is enough to prove that the function f is not an injection since this

shows that there exist two different inputs that produce the same output.

Since f .x/ D x2 C 1, we know that f .x/ � 1 for all x 2 R. This implies

that the function f is not a surjection. For example, �2 is in the codomain

of f and f .x/ ¤ �2 for all x in the domain of f.

2. A Function that Is Not an Injection but Is a Surjection]

Let T D fy 2 R j y � 1g, and define F W R ! T by F.x/ D x2 C 1. As in

Example 1, the function F is not an injection since F.2/ D F.�2/ D 5.

Is the function F a surjection? That is, does F map R onto T ? As in

Example 1, we do know that F.x/ � 1 for all x 2 R.
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To see if it is a surjection, we must determine if it is true that for every y 2 T ,

there exists an x 2 R such that F.x/ D y. So we choose y 2 T. The goal is

to determine if there exists an x 2 R such that

F.x/ D y, or

x2 C 1 D y:

One way to proceed is to work backward and solve the last equation (if

possible) for x. Doing so, we get

x2 D y � 1

x D
p

y � 1 or x D �
p

y � 1:

Now, since y 2 T , we know that y � 1 and hence that y � 1 � 0. This

means that
p

y � 1 2 R. Hence, if we use x D
p

y � 1, then x 2 R, and

F.x/ D F
�

p

y � 1
�

D
�

p

y � 1
�2

C 1

D .y � 1/ C 1

D y:

This proves that F is a surjection since we have shown that for all y 2 T,

there exists an x 2 R such that F.x/ D y. Notice that for each y 2 T, this

was a constructive proof of the existence of an x 2 R such that F.x/ D y.

An Important Lesson. In Examples 1 and 2, the same mathematical formula

was used to determine the outputs for the functions. However, one function

was not a surjection and the other one was a surjection. This illustrates the

important fact that whether a function is surjective not only depends on the

formula that defines the output of the function but also on the domain and

codomain of the function.

3. A Function that Is an Injection but Is Not a Surjection]

Let Z� D fx 2 Z j x � 0g D N[f0g. Define gW Z� ! N by g.x/ D x2C1.

(Notice that this is the same formula used in Examples 1 and 2.) Following

is a table of values for some inputs for the function g.

x g.x/ x g.x/

0 1 3 10

1 2 4 17

2 5 5 26
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Notice that the codomain is N, and the table of values suggests that some nat-

ural numbers are not outputs of this function. So it appears that the function

g is not a surjection.

To prove that g is not a surjection, pick an element of N that does not appear

to be in the range. We will use 3, and we will use a proof by contradiction

to prove that there is no x in the domain .Z�/ such that g.x/ D 3. So we

assume that there exists an x 2 Z� with g.x/ D 3. Then

x2 C 1 D 3

x2 D 2

x D ˙
p

2:

But this is not possible since
p

2 … Z�. Therefore, there is no x 2 Z� with

g.x/ D 3. This means that for every x 2 Z�, g.x/ ¤ 3. Therefore, 3 is not

in the range of g, and hence g is not a surjection.

The table of values suggests that different inputs produce different outputs,

and hence that g is an injection. To prove that g is an injection, assume that

s; t 2 Z� (the domain) with g.s/ D g.t/. Then

s2 C 1 D t2 C 1

s2 D t2:

Since s; t 2 Z�, we know that s � 0 and t � 0. So the preceding equation

implies that s D t . Hence, g is an injection.

An Important Lesson. The functions in the three preceding examples all

used the same formula to determine the outputs. The functions in Examples 1

and 2 are not injections but the function in Example 3 is an injection. This

illustrates the important fact that whether a function is injective not only de-

pends on the formula that defines the output of the function but also on the

domain of the function.
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7.3 Practice Problems for Chapter 7

1. Let RC D fy 2 R j y > 0g. Define

f W R ! R by f .x/ D e�x , for each x 2 R, and

gW R ! RC by g.x/ D e�x , for each x 2 R.

Determine if each of these functions is an injection or a surjection. Justify

your conclusions. Note: Before writing proofs, it might be helpful to draw

the graph of y D e�x . A reasonable graph can be obtained using �3 � x �
3 and �2 � y � 10. Please keep in mind that the graph does not prove any

conclusion, but may help us arrive at the correct conclusions, which will still

need proof.

2. For each of the following functions, determine if the function is an injection

or a surjection (or both, and hence, a bijection). Justify all conclusions.

(a) F W R ! R defined by F.x/ D 5x C 3, for all x 2 R.

(b) GW Z ! Z defined by G.x/ D 5x C 3, for all x 2 Z.

(c) f W .R � f4g/ ! R defined by f .x/ D 3x

x � 4
, for all x 2 .R � f4g/.

(d) gW .R � f4g/ ! .R � f3g/ defined by g.x/ D 3x

x � 4
, for all

x 2 .R � f4g/.

3. Let s be the function that associates with each natural number the sum of

its distinct natural number divisors. This is called the sum of the divisors

function. For example, the natural number divisors of 6 are 1, 2, 3, and 6,

and so
s.6/ D 1 C 2 C 3 C 6

D 12:

(a) Calculate s.k/ for each natural number k from 1 through 15.

(b) Is the sum of the divisors function an injection? Is it a surjection?

Justify your conclusions.

4. Let M2.R/ represent the set of all 2 by 2 matrices over R.

(a) Define detWM2.R/ ! R by

det

�

a b

c d

�

D ad � bc:
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This is the determinant function on the set of 2 by 2 matrices over the

real numbers. Is the determinant function an injection? Is the determi-

nant function a surjection? Justify your conclusions.

(b) Define tranWM2.R/ ! M2.R/ by

tran

�

a b

c d

�

D AT D
�

a c

b d

�

:

This is the transpose function on the set of 2 by 2 matrices over the

real numbers. Is the transpose function an injection? Is the transpose

function a surjection? Justify your conclusions.

(c) Define F WM2.R/ ! R by

F

�

a b

c d

�

D a2 C d2 � b2 � c2:

Is the function F an injection? Is the function F a surjection? Justify

your conclusions.



Appendix A

Guidelines for Writing

Mathematical Proofs

One of the most important forms of mathematical writing is writing mathematical

proofs. The writing of mathematical proofs is an acquired skill and takes a lot of

practice.

Following is a summary of all the writing guidelines introduced in the text.

This summary contains some standard conventions that are usually followed when

writing a mathematical proof.

1. Know your audience. Every writer should have a clear idea of the intended

audience for a piece of writing. In that way, the writer can give the right

amount of information at the proper level of sophistication to communicate

effectively. This is especially true for mathematical writing. For example, if

a mathematician is writing a solution to a textbook problem for a solutions

manual for instructors, the writing would be brief with many details omitted.

However, if the writing was for a students’ solution manual, more details

would be included.

2. Begin with a carefully worded statement of the theorem or result to be

proven. The statement should be a simple declarative statement of the prob-

lem. Do not simply rewrite the problem as stated in the textbook or given on

a handout. Problems often begin with phrases such as “Show that” or “Prove

that.” This should be reworded as a simple declarative statement of the the-

orem. Then skip a line and write “Proof” in italics or boldface font (when

using a word processor). Begin the proof on the same line. Make sure that

48
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all paragraphs can be easily identified. Skipping a line between paragraphs

or indenting each paragraph can accomplish this.

As an example, an exercise in a text might read, “Prove that if x is an odd

integer, then x2 is an odd integer.” This could be started as follows:

Theorem. If x is an odd integer, then x2 is an odd integer.

Proof : We assume that x is an odd integer . . . .

3. Begin the proof with a statement of your assumptions. Follow the state-

ment of your assumptions with a statement of what you will prove.

Proof. We assume that x and y are odd integers and will prove that x � y is

an odd integer.

4. Use the pronoun “we.” If a pronoun is used in a proof, the usual convention

is to use “we” instead of “I.” The idea is to stress that you and the reader

are doing the mathematics together. It will help encourage the reader to

continue working through the mathematics. Notice that we started the proof

of the theorem at the end of item (2) with “We assume that : : : :”

5. Use italics for variables when using a word processor. When using a

word processor to write mathematics, the word processor needs to be capa-

ble of producing the appropriate mathematical symbols and equations. The

mathematics that is written with a word processor should look like typeset

mathematics. This means that variables need to be italicized, boldface is

used for vectors, and regular font is used for mathematical terms such as the

names of the trigonometric functions and logarithmic functions.

For example, we do not write sin x or sin x. The proper way to typeset this

is sin x.

6. Do not use � for multiplication or ˆ for exponents. Leave this type of

notation for writing computer code. The use of this notation makes it difficult

for humans to read. In addition, avoid using = for division when using a

complex fraction.

For example, it is very difficult to read
�

x3 � 3x2 C 1=2
�

= .2x=3 � 7/; the

fraction

x3 � 3x2 C 1

2
2x

3
� 7

is much easier to read.
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7. Use complete sentences and proper paragraph structure. Good grammar

is an important part of any writing. Therefore, conform to the accepted rules

of grammar. Pay careful attention to the structure of sentences. Write proofs

using complete sentences but avoid run-on sentences. Also, do not forget

punctuation, and always use a spell checker when using a word processor.

8. Keep the reader informed. Sometimes a theorem is proven by proving the

contrapositive or by using a proof by contradiction. If either proof method

is used, this should be indicated within the first few lines of the proof. This

also applies if the result is going to be proven using mathematical induction.

Examples:

� We will prove this result by proving the contrapositive of the statement.

� We will prove this statement using a proof by contradiction.

� We will assume to the contrary that : : : :

� We will use mathematical induction to prove this result.

In addition, make sure the reader knows the status of every assertion that

is made. That is, make sure it is clearly stated whether an assertion is an

assumption of the theorem, a previously proven result, a well-known result,

or something from the reader’s mathematical background.

9. Display important equations and mathematical expressions. Equations

and manipulations are often an integral part of the exposition. Do not write

equations, algebraic manipulations, or formulas in one column with reasons

given in another column (as is often done in geometry texts). Important equa-

tions and manipulations should be displayed. This means that they should

be centered with blank lines before and after the equation or manipulations,

and if one side of an equation does not change, it should not be repeated. For

example,

Using algebra, we obtain

x � y D .2m C 1/ .2n C 1/

D 4mn C 2m C 2n C 1

D 2 .2mn C m C n/ C 1:

Since m and n are integers, we conclude that : : : :
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10. Equation numbering guidelines. If it is necessary to refer to an equation

later in a proof, that equation should be centered and displayed, and it should

be given a number. The number for the equation should be written in paren-

theses on the same line as the equation at the right-hand margin.

Example:

Since x is an odd integer, there exists an integer n such that

x D 2n C 1: (1)

Later in the proof, there may be a line such as

Then, using the result in equation (1), we obtain : : : :

Please note that we should only number those equations we will be

referring to later in the proof. Also, note that the word “equation” is not

capitalized when we are referring to an equation by number. Although it

may be appropriate to use a capital “E,” the usual convention in

mathematics is not to capitalize.

11. Do not use a mathematical symbol at the beginning of a sentence.

For example, we should not write, “Let n be an integer. n is an odd integer

provided that : : : :” Many people find this hard to read and often have to re-

read it to understand it. It would be better to write, “An integer n is an odd

integer provided that : : : :”

12. Use English and minimize the use of cumbersome notation. Do not use

the special symbols for quantifiers 8 (for all), 9 (there exists), Ö (such that),

or ) (therefore) in formal mathematical writing. It is often easier to write,

and usually easier to read, if the English words are used instead of the sym-

bols. For example, why make the reader interpret

.8x 2 R/ .9y 2 R/ .x C y D 0/

when it is possible to write

For each real number x, there exists a real number y such that x C y D 0,

or more succinctly (if appropriate)

Every real number has an additive inverse.
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13. Tell the reader when the proof has been completed. Perhaps the best way

to do this is to say outright that, “This completes the proof.” Although it

may seem repetitive, a good alternative is to finish a proof with a sentence

that states precisely what has been proven. In any case, it is usually good

practice to use some “end of proof symbol” such as �.

14. Keep it simple. It is often difficult to understand a mathematical argument

no matter how well it is written. Do not let your writing help make it more

difficult for the reader. Use simple, declarative sentences and short para-

graphs, each with a simple point.

15. Write a first draft of your proof and then revise it. Remember that a proof

is written so that readers are able to read and understand the reasoning in the

proof. Be clear and concise. Include details but do not ramble. Do not be

satisfied with the first draft of a proof. Read it over and refine it. Just like

any worthwhile activity, learning to write mathematics well takes practice

and hard work. This can be frustrating. Everyone can be sure that there will

be some proofs that are difficult to construct, but remember that proofs are a

very important part of mathematics. So work hard and have fun.



Appendix B

Answers and Hints for the

Practice Problems

Chapter 2

1. A counterexample for this statement will be values of a and b for which 5

divides a or 5 divides b, and 5 does not divide 5a C b. One counterexample

for the statement is a D 5 and b D 1. For these values, the hypothesis is true

since 5 divides a and the conclusion is false since 5a C b D 26 and 5 does

not divide 26.

2. All examples should indicate the proposition is true. Following is a proof.

Proof. We assume that m is an odd integer and will prove that
�

3m2 C 4m C 6
�

.

Since m is an odd integer, there exists an integer k such that m D 2k C 1.

Substituting this into the expression
�

3m2 C 4m C 6
�

and using algebra, we

obtain

3m2 C 4m C 6 D 3 .2k C 1/2 C 4 .2k C 1/ C 6

D
�

12k2 C 12k C 3
�

C .8k C 4/ C 6

D 12k2 C 20k C 13

D 12k2 C 20k C 12 C 1

D 2
�

6k2 C 10k C 6
�

C 1

By the closure properties of the integers,
�

6k2 C 10k C 6
�

is an integer,

and hence, the last equation shows that 3m2 C 4m C 6 is an odd integer.

53
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This proves that if m is an odd integer, then
�

3m2 C 4m C 6
�

is an odd

integer. �

3. Proof. We let m be a real number and assume that m, m C 1, and m C 2 are

the lengths of the three sides of a right triangle. We will use the Pythagorean

Theorem to prove that m D 3. Since the hypotenuse is the longest of the

three sides, the Pythagorean Theorem implies that m2C.mC1/2 D .mC2/2.

We will now use algebra to rewrite both sides of this equation as follows:

m2 C
�

m2 C 2m C 1
�

D m2 C 4m C 4

2m2 C 2m C 1 D m2 C 4m C 4

The last equation is a quadratic equation. To solve for m, we rewrite the

equation in standard form and then factor the left side. This gives

m2 � 2m � 3 D 0

.m � 3/.m C 1/ D 0

The two solutions of this equation are m D 3 and m D �1. However,

since m is the length of a side of a right triangle, m must be positive and we

conclude that m D 3. This proves that if m, mC1, and mC2 are the lengths

of the three sides of a right triangle, then m D 3. �

4. For both parts, we assume that n is a natural number and a, b, c, and d are

integers and that a � b .mod n/ and c � d .mod n/. We can then conclude

that n divides a � b and n divides c � d . So there exist integers k and m

such that

a � b D kn and c � d D mn

a D b C kn and c D d C mn

(a) We then see that

.a C c/ � .b C d/ D .a � b/ C .c � d/

D kn C mn

D .k C m/n

Since the integers are closed under addition, k C m is an integer and

the last equation proves that a C c � b C d .mod n/.
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(b) We then see that

ac � bd D .b C kn/.d C mn/ � bd

D .bd C bmn C knd C kmn2/ � bd

D .bm C kd C kmn/n

Since the integers are closed under addition and multiplication,

.bm C kn C kmn/ is an integer and the last equation proves that

ac � bd .mod n/.

5. The proposition is true. Use the choose-an-element method to prove that

each set is a subset of the other set.

Proof. Let A and B be subsets of some universal set. We will prove that

A � .A � B/ D A \ B by proving that A � .A � B/ � A \ B and that

A \ B � A � .A � B/.

First, let x 2 A � .A � B/. This means that

x 2 A and x … .A � B/:

We know that an element is in .A � B/ if and only if it is in A and not in B .

Since x … .A � B/, we conclude that x … A or x 2 B . However, we also

know that x 2 A and so we conclude that x 2 B . This proves that

x 2 A and x 2 B:

This means that x 2 A \ B , and hence we have proved that A � .A � B/ �
A \ B .

Now choose y 2 A \ B . This means that

y 2 A and y 2 B:

We note that y 2 .A � B/ if and only if y 2 A and y … B and hence,

y … .A � B/ if and only if y … A or y 2 B . Since we have proved that

y 2 B , we conclude that y … .A � B/, and hence, we have established that

y 2 A and y … .A � B/. So, y 2 A � .A � B/, and this proves that if

y 2 A \ B , then y 2 A � .A � B/ and hence, A \ B � A � .A � B/.

Since we have proved that A� .A�B/ � A\B and A\B � A� .A�B/,

we conclude that A � .A � B/ D A \ B . �



56 Appendix B. Answers for Practice Problems

Chapter 3

1. Proof. We will prove that for all integers a and b, if ab is even, then a is

even or b is even by proving its contrapositive, which is:

For all integers a and b, if a is odd and b is odd, then ab is odd.

So we assume that both a and b are odd integers and will prove that ab is

an odd integer. Since a and b are odd, there exist integers k and m such that

a D 2k C 1 and b D 2m C 1. Using substitution and algebra, we then see

that

ab D .2k C 1/.2m C 1/

D 4km C 2k C 2m C 1

D 2.2km C k C m/ C 1

Since k and m are integers, the closure properties of the integers allow us to

conclude that .2km C k C m/ is an integer. This means that ab has been

written as two times an integer plus 1, and hence ab is an odd integer. This

proves that for all integers a and b, if a is odd and b is odd, then ab is odd,

which is the contrapositive of the proposition. So we have proved that For

all integers a and b, if ab is even, then a is even or b is even. �

2. (a) Proof. We assume that a is an integer and that a � 2 .mod 5/ and will

prove that a2 � 4 .mod 5/. Since a � 2 .mod 5/, then there exists an

integer k such that a � 2 D 5k and so a D 2 C 5k. Then,

a2 � 4 D .2 C 5k/2 � 4

D 20k C 25k2

D 5
�

4k C 5k2
�

Since the integers are closed under addition and multiplication,
�

4k C 5k2
�

is an integer, and so the last equation proves that 5 divides a2 � 4.

Hence, a2 � 4 .mod 5/, and this proves that for each integer a, if

a � 2 .mod 5/, then a2 � 4 .mod 5/. �

(b) This statement is false. A counterexample is a D 3 since 32 �
4 .mod 5/ and 3 6� 2 .mod 5/.

(c) This statement is false since the statement in Part (b) is false.

3. Proof. We will prove the contrapositive of this statement, which is
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For each positive real number x, if
p

x is rational, then x is rational.

So we assume that x is a rational number and that
p

x is rational, and will

prove that x is rational. Since
p

x is rational, there exist positive integers

m and n such that
p

x D m

n
, then x D m2

n2
. Since m and n are positive

integers, m2 and n2 are positive integers and we can conclude that x is a

rational number. This proves the contrapositive of the statement and so we

have proved that for each positive real number x, if x is irrational, then
p

x

is irrational. �

Chapter 4

1. (a) Some integers that are congruent to 2 modulo 4 are �6; �2; 2; 6; 10.

None of these integers are congruent to 3 modulo 6. For example,

10 6� 3 .mod 6/ since 10 � 3 D 7 and 6 does not divide 7.

(b) Proof. We will use a proof by contradiction. Let n 2 Z and assume

that n � 2 .mod 4/ and that n � 3 .mod 6/. Since n � 2 .mod 4/,

we know that 4 divides n�2. Hence, there exists an integer k such that

n � 2 D 4k: (1)

We can also use the assumption that n � 3 .mod 6/ to conclude that 6

divides n � 3 and that there exists an integer m such that

n � 3 D 6m: (2)

If we now solve equations (1) and (2) for n and set the two expressions

equal to each other, we obtain

4k C 2 D 6m C 3:

However, this equation can be rewritten as

2 .2k C 1/ D 2 .3m C 1/ C 1:

Since 2k C 1 is an integer and 3m C 1 is an integer, this last equation

is a contradiction since the left side is an even integer and the right side

is an odd integer. Hence, we have proven that if n � 2 .mod 4/, then

n 6� 3 .mod 6/. �
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2. Proof. We will use a proof by contradiction. So we assume that there exist

real numbers x and y such that x is rational, y is irrational, and x C y is

rational. Since x is rational, we know that �x is rational. Since the rational

numbers are closed under addition, we know that .�x/ C .x C y is rational,

and we see that

.�x/ C .x C y/ D ..�x/ C x/ C y

D 0 C y

D y

However, this shows that y must be a rational number, but we have also

assumed that y is irrational. Since a real number cannot be both rational

and irrational, this is a contradiction. We have therefore proved that for all

real numbers x and y, if x is rational and y is irrational, then x C y is

irrational. �

3. We will use a proof by contradiction to prove that log2.3/ is an irrational

number.

So we assume that log2.3/ is a rational number. So, if log2.3/ D a, then

2a D 3. This means that a is a positive rational number, and hence, there

exist natural numbers m and n such that 2m=n D 3. Hence,
�

2m=n
�n

D 3n;

From this, we conclude that 2m D 3n. However, 2m is an even integer and

3n is an odd integer. This is a contradiction, and so we have proved that

log2.3/ is an irrational number.

4. We will use a proof by contradiction to prove that
p

2 C
p

3 is an irrational

number. So we assume that
p

2 C
p

3 is a rational number and so we can

write
p

2 C
p

3 D r , where r is a rational number and r ¤ 0. We now

rewrite this equation and then square both sides of the resulting equation to

obtain
p

3 D r �
p

2

3 D r2 � 2r
p

2 C 2

We continue and rewrite this equation to isolate
p

2 on one side of the equa-

tion.

2r
p

2 D r2 � 1

p
2 D r2 � 1

2r
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Since r ¤ 0, 2r ¤ 0, and since the rational numbers are closed under di-

vision by a nonzero rational number, the last equation shows that
p

2 is a

rational number. This is a contradiction since it is known that
p

2 is irra-

tional. This proves that
p

2 C
p

3 is an irrational number.

Chapter 5

1. Proof. We will prove the contrapositive of this proposition, which is:

For each integer a, if 3 does not divide a, then 3 does not divide a2.

So we let a be an integer, assume that 3 does not divide a, and will prove

that 3 does not divide a2. Since 3 does not divide a, we can use the Division

Algorithm to conclude that there exists an integer q such that a D 3q C 1 or

a D 3q C 2.

For the case where a D 3q C 1, we obtain

a2 D .3q C 1/2

D 9q2 C 6q C 1

D 3
�

3q2 C 2q
�

C 1

By the closure properties of the integers
�

3q2 C 2q
�

is an integer, and so the

last equation means that a2 has a remainder of 1 when divided by 3 and so 3

does not divide a2.

For the case where a D 3q C 2, we obtain

a2 D .3q C 2/2

D 9q2 C 12q C 4

D 3
�

3q2 C 4q C 1
�

C 1

By the closure properties of the integers
�

3q2 C 4q C 1
�

is an integer, and

so the last equation means that a2 has a remainder of 1 when divided by 3

and so 3 does not divide a2.

Since we have proved that 3 does not divide a2 in both cases, we have proved

the contrapositive of the proposition, and hence, we have proved that for each

integer a, if 3 divides a2, then 3 divides a. �
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2. For the third case, r D 2 and n D 3q C 2. When we substitute this into
�

n3 � n
�

, we obtain

n3 � n D .3q C 2/3 � .3q C 2/

D
�

27q3 C 54q2 C 36q C 8
�

� .3q C 2/

D 27q3 C 54q2 C 33q C 6

D 3
�

9q3 C 18q2 C 11q C 2
�

:

Since
�

9q3 C 18q2 C 11q C 2
�

is an integer, the last equation proves that

3 j
�

n3 � n
�

.

3. Proof. We let n be an integer, assume that n is odd, and will prove that 8

divides n2 �1. Since n is odd, there exists an integer k such that n D 2k C1.

We then see that

n2 � 1 D .2k C 1/2 � 1

D 4k2 C 4k

D 4k.k C 1/ (1)

We also know since k is an integer, either k or k C 1 is even. In either case,

the product k.k C 1/ must be even and so there exists an integer q such that

k.k C 1/ D 2q:

Substituting this into the right side of equation (1), we obtain n2 � 1 D 8q

and so 8 divides n2 � 1. This proves that for each integer n, if n is odd, then

8 divides n2 � 1. �

Chapter 6

1. Proposition. For each natural number n, 1 C 3 C 5 C � � � C .2n � 1/ D n2.

Proof. We will use a proof by mathematical induction. For each natural

number n, we let P.n/ be

1 C 3 C 5 C � � � C .2n � 1/ D n2:

We first prove that P.1/ is true. Notice that when n D 1, both the left and

right sides of the equation for P.n/ are equal to 1. This proves that P.1/ is

true.
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For the inductive step, we prove that for each k 2 N, if P.k/ is true, then

P.k C 1/ is true. So let k be a natural number and assume that P.k/ is true.

That is, assume that

1 C 3 C 5 C � � � C .2k � 1/ D k2: (1)

The goal now is to prove that P .k C 1/ is true. That is, it must be proved

that

1 C 3 C 5 C � � � C .2k � 1/ C .2.k C 1/ � 1/ D .k C 1/2

1 C 3 C 5 C � � � C .2k � 1/ C .2k C 1/ D .k C 1/2 (2)

To do this, we add .2k C 1/ to both sides of equation (1), which gives

1 C 3 C 5 C � � � C .2k � 1/ C .2k C 1/ D k2 C 2k C 1

D .k C 1/2

Comparing this result to equation (2), we see that if P.k/ is true, then

P.k C 1/ is true. Hence, the inductive step has been established, and by

the Principle of Mathematical Induction, we have proved that for each natu-

ral number n, 1 C 3 C 5 C � � � C .2n � 1/ D n2. �

2. Proof. We will use a proof by mathematical induction. For each natural

number n, we let P.n/ be

4n � 1 .mod 3/ :

We first prove that P.1/ is true. Notice that when n D 1, 4n D 41 D 4 and

4 � 1 .mod 3/. This proves that P.1/ is true.

For the inductive step, we prove that for each k 2 N, if P.k/ is true, then

P.k C 1/ is true. So let k be a natural number and assume that P.k/ is true.

That is, assume that

4k � 1 .mod 3/ : (1)

The goal now is to prove that P .k C 1/ is true. That is, it must be proved

that

4kC1 � 1 .mod 3/ : (2)

Since we have assume that 4k � 1 .mod 3/, we conclude that 3 divides
�

4k � 1
�

and so there exists an integer m such that

4k � 1 D 3m:
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Multiplying both sides of this equation by 4, we obtain

4
�

4k � 1
�

D 4.3m/

4kC1 � 4 D 12m

4kC1 � 3 � 1 D 12m

4kC1 � 1 D 3 C 12m

4kC1 � 1 D 3.1 C 4m/

So we have proved that if P.k/ is true, then P.k C 1/ is true. Hence, the

inductive step has been established, and by the Principle of Mathematical

Induction, we have proved that for each natural number n, 4n � 1 .mod 3/.

�

3. Proposition. For each natural number n with n � 3, 3n > 5 C 2n.

Proof. We will use a proof by mathematical induction. For each natural

number n, we let P.n/ be

3n > 5 C 2n:

We first prove that P.3/ is true. Notice that when n D 3, 3n D 27 and

5 C 2n D 13. Since 27 > 13, this proves that P.1/ is true.

For the inductive step, we prove that for each k 2 N with k � 3, if P.k/ is

true, then P.k C 1/ is true. So let k be a natural number with k � 3 and

assume that P.k/ is true. That is, assume that

3k > 5 C 2k : (1)

The goal now is to prove that P .k C 1/ is true. That is, it must be proved

that

3kC1 > 5 C 2kC1: (2)

So we multiply both sides of inequality (1) to obtain

3 � 3k > 3.5 C 2k/

3kC1 > 15 C 3 � 2k (3)

Since 3 > 2, 3 � 2k > 2 � 2k or 3 � 2k > 2kC1. In addition, 15 > 5 and so we

can co
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So we have proved that if P.k/ is true, then P.k C 1/ is true. Hence, the

inductive step has been established, and by the Principle of Mathematical

Induction, we have proved that for each natural number n, 4n � 1 .mod 3/.

�

4. (a)

f .5/ D 5 f9 D 34 f13 D 233 f .17/ D 1597

f .6/ D 8 f10 D 55 f14 D 377 f .18/ D 2584

f .7/ D 13 f11 D 89 f15 D 610 f .19/ D 4181

f .8/ D 21 f12 D 144 f16 D 987 f .20/ D 6765

(b) Proof. We will use a proof by induction. For each natural number n,

we let P.n/ be,

f3n is an even natural number.

Since f3 D 2, we see that P.1/ is true and this proves the basis step.

For the inductive step, we let k be a natural number and assume that

P.k/ is true. That is, assume that f3k is an even natural number. This

means that there exists an integer m such that

f3k D 2m: (1)

We need to prove that P.k C 1/ is true or that f3.kC1/ is even. Notice

that 3.k C 1/ D 3k C 3 and, hence, f3.kC1/ D f3kC3. We can now

use the recursion formula for the Fibonacci numbers to conclude that

f3kC3 D f3kC2 C f3kC1:

Using the recursion formula again, we get f3kC2 D f3kC1 C f3k .

Putting this all together, we see that

f3.kC1/ D f3kC3

D f3kC2 C f3kC1

D .f3kC1 C f3k/ C f3kC1

D 2f3kC1 C f3k : (2)
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We now substitute the expression for f3k in equation (1) into equa-

tion (2). This gives

f3.kC1/ D 2f3kC1 C 2m

f3.kC1/ D 2 .f3kC1 C m/

This preceding equation shows that f3.kC1/ is even. Hence it has been

proved that if P .k/ is true, then P .k C 1/ is true and the inductive

step has been established. By the Principle of Mathematical Induction,

this proves that for each natural number n, the Fibonacci number f3n

is an even natural number. �

(c) Proof. Let P.n/ be, “f1 C f2 C � � � C fn�1 D fnC1 � 1.” Since

f1 D f3 � 1, P.2/ is true, and this proves the basis step.

For the inductive step, we let k be a natural number with k � 2 and

assume that P.k/ is true and will prove that P.k C 1/ is true. That is,

we assume that

f1 C f2 C � � � C fk�1 D fkC1 � 1; (1)

and will prove that

f1 C f2 C � � � C fk�1 C fk D f.kC1/C1 � 1 D fkC2 � 1: (2)

By adding fk to both sides of equation (1), we see that

.f1 C f2 C � � � C fk�1/ C fk D .fkC1 � 1/ C fk

D .fkC1 C fk/ � 1

D fkC2 � 1:

Comparing this to equation (2), we see that we have proved that if

P .k/ is true, then P .k C 1/ is true and the inductive step has been

established. So by the Principle of Mathematical Induction, this proves

that for each natural number n with n � 2, f1 C f2 C � � � C fn�1 D
fnC1 � 1 �

5. Proof. We will use a proof by mathematical induction. We let P .n/ be,

“there exist nonnegative integers x and y such that n D 3x C 5y.”

Basis Step: For the basis step, we will show that P.8/; P.9/, and P.10/ are

true. We see that

� P.8/ is true since 3 � 1 C 5 � 1 D 8.
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� P.9/ is true since 3 � 3 C 5 � 0 D 9.

� P.10/ is true since 3 � 0 C 5 � 2 D 10.

Inductive Step: Let k 2 N with k � 10. Assume that P .8/, P .9/, . . . ,

P .k/ are true. Now, notice that

k C 1 D 3 C .k � 2/ :

Since k � 10, we can conclude that k � 2 � 8 and hence P .k � 2/ is

true. Therefore, there exist non-negative integers u and v such that k � 2 D
.3u C 5v/. Using this equation, we see that

k C 1 D 3 C .3u C 5v/

D 3 .1 C u/ C 5v:

Hence, we can conclude that P .k C 1/ is true. This proves that if P .8/,

P .9/, . . . , P .k/are true, then P .k C 1/ is true. Hence, by the Second

Principle of Mathematical Induction, for all natural numbers n with n � 8,

there exist nonnegative integers x and y such that n D 3x C 5y. �

Chapter 7

1. The function f is an injection but not a surjection. To see that it is an injec-

tion, let a; b 2 R and assume that f .a/ D f .b/. This implies that e�a D
e�b. Now use the natural logarithm function to prove that a D b. Since

e�x > 0 for each real number x, there is no x 2 R such that f .x/ D �1. So

f is not a surjection.

The function g is an injection and is a surjection. The proof that g is an

injection is basically the same as the proof that f is an injection. To prove

that g is a surjection, let b 2 RC. To construct the real number a such that

g.a/ D b, solve the equation e�a D b for a. The solution is a D � ln b. It

can then be verified that g.a/ D b.

2. (a) Let F W R ! R be defined by F.x/ D 5x C 3 for all x 2 R. Let

x1; x2 2 R and assume that F.x1/ D F.x2/. Then,

5x1 C 3 D 5x2 C 3

5x1 D 5x2

x1 D x2:
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Hence, F is an injection. Now let y 2 R. Then,
y � 3

5
2 R and

F

�

y � 3

5

�

D 5

�

y � 3

5

�

C 3

D .y � 3/ C 3

D y:

Thus, F is a surjection and hence F is a bijection.

(b) The proof that G is an injection is similar to the proof in Part (a) that

F is an injection. Now, for each x 2 Z, 5x C 3 � 3 .mod 5/, and

hence G.x/ � 3 .mod 5/. This means that there is no integer x such

that G.x/ D 0. Therefore, G is not a surjection.

(c) Let a; b 2 R � f4g and assume that f .a/ D f .b/. Then,

3a

a � 4
D 3b

b � 4

3a.b � 4/ D 3b.a � 4/

3ab � 12a D 3ab � 12b

�12a D �12b

a D b:

So f is an injection.

Use a proof by contradiction to show there is no a 2 R � f4g such that

f .a/ D 3. Assume such an a exists. Then

3a

a � 4
D 3

3a D 3a � 12

0 D �12;

and this is a contradiction. Therefore, for all x 2 R � f4g, f .x/ ¤ 3

and f is not a surjection.

(d) The function g is a bijection. The proof that is an injection is similar to

the proof that f is an injection in Part (c). To prove that it is a surjection
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let y 2 R � f3g. Then,
4y

y � 3
2 R � f4g and

g

�

4y

y � 3

�

D
3

�

4y

y � 3

�

�

4y

y � 3

�

� 4

D 12y

4y � 4.y � 3/

D 12y

12

D y:

This proves that g is a surjection.

3. (a) s.1/ D 1

s.2/ D 3

s.3/ D 4

s.4/ D 7

s.5/ D 6

s.6/ D 12

s.7/ D 8

s.8/ D 15

s.9/ D 13

s.10/ D 18

s.11/ D 12

s.12/ D 28

s.13/ D 14

s.14/ D 24

s.15/ D 24

s.16/ D 31

(b) The sum of the divisors function s is not an injection. For example,

s.6/ D s.11/. This function is also not a surjection. For example, for

all x 2 N, s.x/ ¤ 2 and for all x 2 N, s.x/ ¤ 5.

4. (a) The determinant function is not an injection. For example,

det

�

1 0

0 1

�

D det

�

1 2

0 1

�

:

The determinant function is a surjection. To prove this, let a 2 R. Then

det

�

a 0

0 1

�

D a:

(b) The transpose function is a bijection. To prove it is an injection, let
�

a b

c d

�

;

�

p q

r s

�

2 M2.R/ and assume that

tran

�

a b

c d

�

D tran

�

p q

r s

�

:
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Then,

�

a c

b d

�

D
�

p r

q s

�

. Therefore, a D p, b D q, c D r , and

d D s and hence,

�

a b

c d

�

D
�

p q

r s

�

. To prove that the transpose

function is a surjection, let

�

a b

c d

�

2 M2.R/. Then,

tran

�

a c

b d

�

D
�

a b

c d

�

:

(c) The function F is not an injection. For example

F

�

0 0

0 0

�

D 0 and F

�

1 1

1 1

�

D 0:

The function F is a surjection. To prove this, let y 2 R. Consider three

cases.

� If y D 0, then F

�

0 0

0 0

�

D 0 D y.

� If y > 0, then
p

y 2 R and F

� p
y 0

0 0

�

D
�p

y
�2 D y.

� If y < 0, then
p�y 2 R and F

�

0
p�y

0 0

�

D �
�p�y

�2 D y.
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